
NUCLEAR SCIENCE AND TECHNIQUES 26, 030104 (2015)

Parallelizing AT with open multi-processing and MPI∗

LUO Cheng-Ming (罗承明),1, 2 TIAN Shun-Qiang (田顺强),1 WANG Kun (王坤),1

ZHANG Man-Zhou (张满洲),1 ZHANG Qing-Lei (张庆磊),1, 2 and JIANG Bo-Cheng (姜伯承)1, †

1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2University of Chinese Academy of Sciences, Beijing 100049, China

(Received September 26, 2014; accepted in revised form March 5, 2015; published online June 20, 2015)

Simulating charged particle motion through the elements is necessary to understand modern particle accel-
erators. The particle numbers and the circling turns in a synchrotron are huge, and a simulation can be time-
consuming. Open multi-processing (OpenMP) is a convenient method to speed up the computing of multi-cores
for computers based on share memory model. Using message passing interface (MPI) which is based on non-
uniform memory access architecture, a coarse grain parallel algorithm is set up for the Accelerator Toolbox (AT)
for dynamic tracking processes. The computing speedup of the tracking process is 3.77 times with a quad-core
CPU computer and the speed almost grows linearly with the number of CPU.

Keywords: Accelerator Toolbox, Open multi-processing, Message passing interface, Parallel computing

DOI: 10.13538/j.1001-8042/nst.26.030104

I. INTRODUCTION

The Accelerator Toolbox (AT) code was developed at
the Stanford Synchrotron Radiation Lightsource (SSRL) to
model particle accelerators and beam transport lines in the
MATLAB environment [1]. Users of AT can develop their
own functions and applications to meet their various require-
ments by building on the AT source code. The AT results
agree well with experimental measurements. At Shanghai
Synchrotron Radiation Facility (SSRF), AT has been used
for several years [2, 3]. In storage ring simulations, dynamic
aperture tracking and lattice design optimization require high-
ly computation-intensive algorithms. To finish the computa-
tion in an acceptable time, one needs to make the code more
efficient. The bottlenecks in AT performance come from mas-
sive repeated calls of particle tracking functions which are
independent of each other. So paralleling computing is a s-
traightforward way to hasten the computing speed [4].

There are two common ways to parallel a program: us-
ing graphics processing unit (GPU) to compute, and using
multi-core CPU to start multi-thread computation. Since the
computing processes of AT’s tracking program involve lots
of cache operations, the frequent exchange data between the
computer memory and GPU makes GPU computing less at-
tractive when the number of particles is relatively small. So
using multi-core CPU to compute is a better option. Open
multi-processing (OpenMP) is a standardized model to share
memory computing that supports C/C++ compiler. On a local
qual-core computer, one is able to achieve a speed increase of
3.7 times. Based on message passing model, message pass-
ing interface (MPI) is used on a dual CPU server to further
increase the speed. And the speed of computing grows lin-
early with the number of computers.

∗ Supported by the National Natural Science Foundation of China (No.
11105214)
† Corresponding author, jiangbocheng@sinap.ac.cn

II. EXPERIMENTAL

A. Accelerator physics and optimization analysis

The particle motion is modeled by using a point in 6-
dimensional phase space coordinates to represent a particle
in AT.

X = (x, px, y, py, (p− p0)/p0, cτ)
T
, (1)

where, x and y are the transverse coordinates, px and py are
the divergences of x and y, (p − p0)/p0 is the momentum
spread, and cτ is the longitudinal position. Evolution of the
phase space point through a magnetic accelerator-element can
be modelled using the second order transport matrix [5]

Xfinal
j = ∆Xj +

6∑
k=1

RjkXk +

6∑
k=1

6∑
l=1

TjklXkXl. (2)

Therefore, many multiply-reduced operations can be re-
quired to compute the entire process evolving a particle
through a single magnetic element. The particles are assumed
to be sufficiently relativistic that inter-particle interactions
can be ignored, allowing the same operation to be applied
to all particles in parallel [5]. Different accelerator element
has different transport matrix. In AT code, they are calculat-
ed in different ’passmethod’ functions, which are called mil-
lion times in tracking process by AT’s ’ringpass’ function to
calculate the particle trajectories. Calculating multi-particle
through the accelerator element is a SIMD (single instruction
multiple data) operation, and thus well suited to OpenMP and
MPI processing [6].

Parallel computing uses multiple computing resources to
work simultaneously on different parts of a problem [7]. It
is an efficient way to speed up computing. We focus main-
ly on making AT compatible with parallel processing with
OpenMP and MPI. OpenMP is an application programming
interface (API) for multi-thread programming in C/C++ and
FORTRAN. It offers a highly abstract description of parallel

030104-1

http://dx.doi.org/10.13538/j.1001-8042/nst.26.030104
mailto:jiangbocheng@sinap.ac.cn

LUO Cheng-Ming et al. Nucl. Sci. Tech. 26, 030104 (2015)

computing. It is composed of a set of compiler directives, li-
brary routines and environment variables affecting run-time
behavior [8]. By introducing OpenMP routines and directives
to the existing AT source code, we make AT follow a unifor-
m memory access (UMA) model, in which all the cores of
processors share the same physical memory uniformly. It re-
quires moderate changes to the ’passmethod’ functions writ-
ten in C language, for which OpenMP can be implemented
by Matlab’s MEX compiling function [9].

MPI is the standard of distribution model using explicit
ways to control parallel computing. MatlabMPI is a Matlab
implementation of the MPI standard and allows any Matlab
program to exploit multiple processors [10]. A non-uniform
memory access (NUMA) architecture is built with OpenM-
P and MPI. In this model, multi machines run independently
with its own local memory and communicate between each
other with Bus Interconnect. Fig. 1 shows schematically the
NUMA model.

Fig. 1. Schematics of non-uniform memory access (NUMA).

In this case, we use a general distributed memory model.
The upper computers use MatlabMPI to control the parallel
computing and communication, and the lower computers use
OpenMP to compute. With message-passing functions, the
data are distributed to lower computers, and the computing
results from the lower computers are then transferred to the
upper computers and combined into the final result. This pat-
tern allows us to use the shared memory computing interface
to manage local task distribution for every CPU, and makes
AT functioning in a global distributed memory model. In this
way, we can avoid the data conflict caused by two processors
trying to access to the same memory. If only UMA model is
used, such a conflict will cause a longer CPU spin time. In
some cases, the data-conflict delay can make working time of
two processors longer than that of one processor.

B. Parallel AT with OpenMP and MPI

As mentioned above, the speed increase of passmethod
functions will increase speed of computing. OpenMP and
MPI are used to parallelize the passmethod functions. The
way to create an OpenMP and MPI program with existing
code is to find sections of the codes that can be processed si-
multaneously. The changes in the codes and the way to com-
pile the codes are given in the appendix. The parallel part of
the function use library functions omp get num threads() and
omp get thread num() to get the number of threads in the par-
allel zone and the id of the working thread (all the threads are
numbered from zero). The start index is the offset for each
computing core. According to the thread id number, different
thread works on different data. In this way, parallelizing the
data and tasks are realized.

Taking DriftPass.c [2], which is used to calculate the status
after the particles passing through a drift element, as an ex-
ample. Intel VTune Amplifier [11] is used to test efficiency
of the parallel DriftPass.c. The number of particles is 3920,
with 500000 loops on a qual-core computer. The results are
given in Table 1, where the CPU time is the sum of CPU time
of all threads, and the overhead & spin time is the time an
active thread takes to get a synchronous construct. These t-
wo make up most of the CPU time. The overhead & spin time
takes about 9.3% of all CPU time. That is the main reason the
speedup of a parallel program cannot reach the limit value of
4. The speedup is 2.98.

TABLE 1. Computation time for parallel and non-parallel DriftPass
Type of Elapsed CPU time Overhead &
computing time (s) (s) spin time (s)
Parallel 10.28 77.83 7.22
Non-parallel 30.09 30.05 0.00

OpenMP is used to parallelize all the ’passmethod’ func-
tions called in ’ringpass’, with all of the ’passmethod’ codes
being parallelizable. Therefore ringpass can be treated as a
parallel program.

III. RESULTS AND DISCUSSION

Frequency map analysis (FMA) is an analysis method to
find the amplitude of frequency shifts within a dynamic aper-
ture. The program flow traces the particles, obtains output
data of the particles through N turns, and uses a first order
Hamming filter to filter the data [12]. FMA is applied as a
frequency scanning tool to reveal information about nonlin-
ear resonances and guide frequency optimization [13]. The
particle tracking takes most of the computing time. OpenMP
is used to reprogram AT to shorten the time, which may save
days or weeks. Figure 2 shows the result of using parallel and
non-parallel methods to compute FMA with different num-
bers of particles using an Intel i7-3770 CPU with 4G RAM.

The FMA execution time grows almost linearly with the
number of particles. The non-parallel method is up to 3.16

030104-2

PARALLELIZING AT WITH OPEN . . . Nucl. Sci. Tech. 26, 030104 (2015)

Fig. 2. FMA execution time for non-parallel and parallel computing
as function of number of particles.

TABLE 2. Time profile (in second) using parallel and non-parallel
computing

N
Parallel computing Non-parallel computing

Tf Tall Tf/Tall Tf Tall Tf/Tall

512 1.19 5.87 0.202 1.25 17.52 0.071
1128 2.66 12.58 0.207 2.82 39.11 0.072
2450 5.75 28.04 0.205 6.16 85.92 0.071
4418 10.18 51.28 0.206 11.01 152.52 0.072
9800 22.47 109.74 0.207 24.40 339.43 0.072
177578 50.57 191.24 0.212 43.50 604.51 0.072

times slower than the parallel method. According to Am-
dahl’s law [14]

S = [fpar/P + (1− fpar)]
−1, (3)

where fpar is the parallel fraction of the code, P is the speedup
for the parallel part, and S is the speedup of the whole pro-
gram. The profile command is used to obtain the time for
parallel and non-parallel parts of the program flow. The par-
allel part is the ’ringpass’ function and the main non-parallel
part is the FMA function. The remaining parts take little of
the total time. Table 2 shows the results for the parallel and
non-parallel programs, with N being the number of particles,
Tf the time the FMA function takes and Tall the time for the
whole program.

From Table 2, the Tf/Tall ratio is stable for both types of
computing. According to Amdahl’s law, the speedup of the
parallel part can be obtained by Eq. (4)

[(1− 0.07)/P + 0.07]−1 = 3.16, (4)

where 0.07 is the non-parallel part of the computing process.
So, the speedup is P = 3.77, and it never exceeds 4, with
even larger number of particles. The CPU is quad-core, so
there will be a maximum of 4 computing threads executing at
any one time, and synchronization between the threads also
reduces the compute speed.

To take advantage of the speedup factor increase by Open-
MP and MPI, a Dell R720 server is utilized for particle track-
ing in the slow extraction of Shanghai Proton Therapy Syn-
chrotron. R720 has 2 processors which has 16 CPU cores
each. It acts as two compute nodes in the computing pro-
cess. The speedup of one node is 6.23. The speedup of 2
nodes is 12.18 which is almost double of the speedup of one
node. Since the computing process is independent of each
other, and the communication takes about 2.3% of the total
running time, the speedup of two nodes should almost double
the speedup of one node. It can be estimated that the speedup
of the computing process can grow linearly with the number
of CPU using OpenMP and MPI.

IV. CONCLUSION

In this paper, we have introduced the way AT works, how
OpenMP and MPI can be used in parallelizing programs. The
parallelized AT can compute faster. If the code can be paral-
lelized, OpenMP and MPI can be used in a similar way for
other accelerator physics programs. This pattern is conve-
nient to use and the speedup is close to the limit of what can
be achieved by a single computer or a cluster. With more
computer nodes, larger problems can be solved.

APPENDIX

#include<omp.h>
...... some computation and initialization

Omp set num threads(4)
#pragma omp parallel private (i) share (start index ,n)
{
thread id =omp get thread num();
num threads=omp get num threads();
start = start index + n∗ thread id /num threads ;
if (thread id ==num threads−1)
end=n−1;
else
end=n∗(thread num+1)/ num threads−1;
for (i= start ; i<=end;i++){
... computation
}
}

[1] Terebilo A. Accelerator toolbox for MATLAB. SLAC-PUB-
8732, 2001.

[2] Tian S Q, Jiang B C, Zhou Q G. Lattice design and optimiza-
tion of the SSRF storage ring with super-bends. Nucl Sci Tech,

030104-3

LUO Cheng-Ming et al. Nucl. Sci. Tech. 26, 030104 (2015)

2014 25: 010102. DOI: 10.13538/j.1001-8042/nst.25.010102
[3] Jiang B C, Liu G M, Zhao Z T. Simulation of a transverse feed-

back system for the SSRF storage ring. High Energ Phys Nucl,
2007, 31: 956–961.

[4] Yan X Y, Zhang W W, Bu S H. Parallel optimization of
three-dimension particle simulation based on nixed MPI/Open-
MP Programming. Journal of South China University of
Technology (Natural Science Edition), 2012, 40: 71–78.
DOI:10.3969/j.issn.1000-565X.2012.04.011

[5] Grote H, Iselin F C. The MAD Program (Methodical Acceler-
ator Design) Version 8.13/8 User’s Reference Manual. Geneva,
Switzerland. Jan. 18, 1994.

[6] Appleby R, Bailey D, Higham J, et al. High performance
stream computing for particle beam transport simulations. J
Phys Conf Ser, 2008, 119: 042001. DOI: 10.1088/1742-
6596/119/4/042001

[7] Chen G L, Sun G Z, Xu Y, et al. Integrated research of paral-
lel computing: Status and future. Chinese Sci Bull, 2009, 54:
1845–1853. DOI: 10.1007/s11434-009-0261-9

[8] Dagum L and Menon R. OpenMP: an industry standard API for
shared-memory programming. IEEE Comput Sci Eng, 1998, 5:
46–55. DOI: 10.1109/99.660313

[9] Zhang Y. Solving large-scale linear programs by interior-point
methods under the Matlab Environment. Optim Method Softw,
1998, 10: 1–31. DOI: 10.1080/10556789808805699

[10] Kepner J. Parallel programming with MatlabMPI. arXiv: astro-
ph/0107406

[11] Marowka A. On performance analysis of a multithreaded appli-
cation parallelized by different programming models using in-
tel Vtune. Lect Notes Comput Sc, 2011, 6873: 317–331. DOI:
10.1007/978-3-642-23178-0 28

[12] Laskar J. Frequency map analysis and particle accelerators.
IEEE Part Acc Conf, 2003, 1: 378–382. DOI: 10.1109/-
PAC.2003.1288929

[13] Tian S Q, Liu G M, Li H H, et al. Tune optimization of the
third generation light source storage ring based on Frequen-
cy Map Analysis. Chinese Phys C, 2009, 33: 224–. DOI:
10.1088/1674-1137/33/3/012

[14] Chandra R, Dagum L, Kohr D, et al. Parallel programming in
OpenMP. San Francisco (USA): Morgan Kaufmann Publishers,
2001, 16–17.

030104-4

http://dx.doi.org/10.13538/j.1001-8042/nst.25.010102
http://dx.doi.org/10.3969/j.issn.1000-565X.2012.04.011
http://dx.doi.org/10.1088/1742-6596/119/4/042001
http://dx.doi.org/10.1088/1742-6596/119/4/042001
http://dx.doi.org/10.1007/s11434-009-0261-9
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1080/10556789808805699
http://arxiv.org/abs/astro-ph/0107406
http://arxiv.org/abs/astro-ph/0107406
http://dx.doi.org/10.1007/978-3-642-23178-0_28
http://dx.doi.org/10.1007/978-3-642-23178-0_28
http://dx.doi.org/10.1109/PAC.2003.1288929
http://dx.doi.org/10.1109/PAC.2003.1288929
http://dx.doi.org/10.1088/1674-1137/33/3/012
http://dx.doi.org/10.1088/1674-1137/33/3/012

	Parallelizing AT with open multi-processing and MPI
	Abstract
	Introduction
	Experimental
	Accelerator physics and optimization analysis
	Parallel AT with OpenMP and MPI

	Results and Discussion
	Conclusion
	appendix
	References

