Available online at www.sciencedirect.com

NUCLEAR SCIENCE AND TECHNIQUES

Nuclear Science and Techniques, Vol.17, No.1 (2006) 21-23

Calculation of half-life for ⁷⁹Se decay

ZHOU Chun-Mei WU Zhen-Dong

(China Nuclear Data Center, Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China)

Abstract The half-life for ⁷⁹Se decay is calculated by using the $\text{Log} f^{1u}t$ systematics method. Based on the data analysis and comparison with experimental data the ⁷⁹Se half-life is recommended. The scheme for ⁷⁹Se decay is also shown and the radiation data are calculated in the text.

Key words ⁷⁹Se, Nuclear decay, Systematics, Data calculation

CLC number 0571.3

1 Introduction

The ⁷⁹Se is one of the fission products with long half-life. It is an important nuclide of radioisotope applications and radioactive waste-treatments, and is also used as the fission monitor. The measurement of its half-life is very difficult, because the differences of half-lives in different experiments are very large. Therefore, it is highly important and interesting to calculate its half-life with $\text{Log} f^{1u}t$ systematics. The calculated half-life has also been compared with reliable experimental data.

2 Calculation codes and flow chart

The calculation codes and their functions are listed in Table 1. They are all ENSDF (Evaluated Nuclear Structure Data File) physics analysis codes^[1] for the International Network of Nuclear Structure and Decay Data Evaluation, which can be obtained from the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory, USA. In Table 1, a simple description about the codes that was used is given.

As seen in Fig. 1, the main steps of ⁷⁹Se half-life calculation are as follows: (1) Prepare the ENSDF format data file for ⁷⁹Se half-life calculation. ENSDF format of input data is adopted by the calculation code. The ENSDF format check must be done before the

calculation, so that ⁷⁹Se half-life calculation will be reliable. (2) Run LOGFT code to calculate the Log $f^{1u}t$ values. The Log $f^{1u}t$ values for different half-lives will

 Table 1 Calculation codes^[1] and their functions of half-life and radiation data for ⁷⁹Se decay

Code name	Main function
FMTCHK	ENSDF formatted data check
LOGFT	Calculation of electron capture probabilities and
	$Log f^{lu}t$
RADLST	Energy and intensity calculation for Auger elec-
	tron and X-ray
ENSDAT	Calculation data output shown in tables and
	drawings

Fig. 1 Calculation flow chart of half-life and radiation data for ⁷⁹Se decay.

be calculated when the electron capture branching ratio to the j^{th} -level of daughter nuclide is known and the calculation results will be put into the ENSDF format decay data file that is prepared. (3) Based on the Log $f^{1u}t$ systematics, the correct Log $f^{1u}t$ value of ⁷⁹Se decay can be selected and then the half-life of ⁷⁹Se can be calculated. (4) Compare the half-life calculated with experimental half-lives and recommend the new half-life of ⁷⁹Se decay. (5) Run RADLST code to calculate the radiation data. (6) Run ENSDAT code to output the calculation data in tables and to draw the decay scheme.

3 $Log f^{1u}t$ systematics calculation

The spin and parity of the ground-state (GS) are $J^{\pi} = 7/2^+$ for ⁷⁹Se and $J^{\pi} = 3/2^-$ for ⁷⁹Br, and the change of spin and parity is $\Delta J^{\pi} = 2^-$ in ⁷⁹Se β^- decay. Obviously, this is a first-forbidden unique β^- decay and its $\text{Log } f^{1u}t$ should be marked as $\text{Log } f^{1u}t$. The ground-state of ⁷⁹Se does not decay to the ground-state of ⁷⁹As through $(\epsilon + \beta^+)$ decay directly and the experimentally determined β^- branching ratio from ground-state of ⁷⁹Se to ground-state of ⁷⁹Br is $I_{\beta^-} = 100$ %.

In ⁸¹Kr ε decay, the spin and parity is $J^{\pi} = 7/2^{+}$ for ⁸¹Kr and is $J^{\pi} = 3/2^{-}$ for ⁸¹Br and the change of spin and parity is $\Delta J^{\pi} = 2^{-}$. Obviously, this is also a first-forbidden unique ε decay.

Table 3 shows that the general decay characters of the ⁷⁹Se β^- decay and the ⁸¹Kr ϵ decay are basically the same. Therefore, the $\log f^{1u}t$ systematics method for 81 Kr ε decay is also suitable for calculating the half-life of ⁷⁹Se. The $Log f^{1u}t$ systematics value of ⁸¹Kr ε decay can also be adopted to calculate the half-life of ⁷⁹Se decay. From Table 2, we can see that the $Log f^{lu} t$ values are increased with its half-life $T_{1/2}$ when $I_{\beta^-} = 100$ % is fixed. The Log $f^{1u}t$ systematics results were published by Singh, et al.^[2] in 1998. From the results the $Log f^{1u}t = 11.01$ for the ground-state of ⁸¹Kr to the ground-state of ⁸¹Br through ε decay is known when its I_{ε} =99.7 % is fixed. The half-life of ⁷⁹Se, $T_{1/2} = 5.60 \times 10^5$ a, can be obtained from this $\text{Log} f^{1u}t$ systematics calculation when its $I_{B^-} = 100 \%$ is fixed.

Table 2 Log $f^{1u}t$ values of β^- decay from GS of ⁷⁹Se to GS of ⁷⁹Br calculated by LOGFT code.

$Log f^{lu} t$	$T_{1/2}$ /a	I_{eta} -/ %
6.26	1.00×10^{1}	100
7.26	1.00×10^{2}	100
8.26	1.00×10^{3}	100
9.26	1.00×10^4	100
10.26	1.00×10^5	100
10.73*	$2.95 \times 10^{5*}$	100^{*}
11.01	5.60×10^5	100
11.26	1.00×10^{6}	100
12.26	1.00×10^{7}	100
13.26	1.00×10^{8}	100

* Recommended values of this work.

 Table 3 Decay character comparison between ⁸¹Kr to ⁸¹Br and ⁷⁹Se to ⁷⁹Br

Parent nuclides Daughter nuclides			$Log f^{1u}t$	$T_{1/2} / a$	I_{eta^-} , $I_{arepsilon}$ / %				
Nuclide	Level / keV	J^{π}	Decay mode	Nuclide	Level / keV	J^{π}			
⁷⁹ Se	0.0	7/2 +	β_	⁷⁹ Br	0.0	3/2 -	11.01	5.60×10 ⁵	100
⁸¹ Kr	0.0	7/2 +	3	81 Br	0.0	3/2 -	11.01	2.29×10 ⁵	99.7

4 Comparison with experimental data

In Table 4, the experimental and calculated data of the half-life of ⁷⁹Se decay are listed. The differences of half-lives among different experimenters are very large and only the latest measured value, $T_{1/2} = (2.95 \pm 0.38) \times 10^5 a^{[7]}$, obtained by using mass spectrometry method with projectile X-ray detection, is near the calculated one. Here, $T_{1/2} =$

 $(2.95\pm0.38)\times10^5$ a is recommended as the half-life of ⁷⁹Se decay.

Table 4 Measured and calculated half-life of Se dec
Table 4 Measured and calculated nan-life of Seldec

$T_{1/2}$ / a	<i>T</i> _{1/2} /a	Published	Reference
(measured)	(calculated)	year	
< 6.5 × 10 ⁴		1978	[3]
$(4.8 \pm 0.4) \times 10^5$		1995	[4]
$(1.1\pm0.2)\times10^{6}$		1996	[5]
$< 6.5 \times 10^{5}$		1997	[6]
$(2.95 \pm 0.38) \times 10^5$		2001	[7]
	5.60×10^5	2004	This work

5 Decay scheme and radiation data

On the basis of the half-life of ⁷⁹Se decay recommended above, the scheme of ⁷⁹Se β^- decay is shown in Fig.2, where the decay characters are also given. In Table 5, the radiation data of ⁷⁹Se β^- decay are listed, which are calculated by using the RADLST code.

Fig. 2 Decay scheme of ⁷⁹Se β^- decay.

Table 5 Radiation data of 79 Se β^- decay

Radiation type	Energy / keV	Absolute intensity / %
0-	151.0±1.7 (Max)	100
β	52.92±0.62 (Avg)	100

6 Discussion

It is a test for us to calculate the half-life of ⁷⁹Se decay by using the $\text{Log} t^{\text{lu}}t$ systematics method. The result is very interesting. This method can be adopted for the experimenters to measure the half-life of some nuclides. The method is also used for data evaluators to select the correct data from different and dispersive data of the half-life.

References

- 1 Burrows TW. ENSDF Physics Analysis Codes. Private Communications (2000)
- 2 Singh B, Rodriguez JL, Wong SSM, et al. Nuclear Data Sheets, 1998, 84: 487
- 3 Lederer CM, Shirley RS, Browne E, *et al.* Table of isotopes (7th Edition). New York: John Wiley & Sons, Inc, 1978.
- 4 YU Run-Lan, GUO Jing-Ru, CUI An-Zhi, *et al.* J. Nucl. Radiochem. 1995, **17**(1): 33 (in Chinese)
- 5 JIANG Song-Sheng, HE Ming, DIAO Li-Jun, *et al.* Nucl. Instrum. Methods, 1996, **B172**: 403
- Audi G, Bersillon O, Blachot J, et al. Nucl. Phys. 1997, A624: 1
- JIANG Song-Sheng, HE Ming, DIAO Li-Jun, *et al.* Chin. Phys. Letter, 2001, **18**(6): 746