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Abstract Molten salt reactor, with good economics and
inherent reliability, is one of the six types of Generation IV
candidate reactors. The Basket-Fuel-Assembly Molten Salt
Reactor (BFAMSR) is a new concept design based on fuel
assemblies composed of fuel pebbles made of TRISO-
coated particles. Four refueling patterns, similar to the fuel
management strategy for water reactors, are designed and
analyzed for BFAMSR in terms of economy and security.
The MCNPX is employed to calculate the parameters, such
as the total duration time, cycle length, discharge burnup,
total discharge quantity of >*°U, total discharge quantity of
239py, neutron flux distribution and power distribution. The
in—out loading pattern has the highest burnup and duration
time, the worst neutron flux and power distribution and the
lowest neutron leakage. The out—in pattern possesses the
most uniform neutron flux distribution, the lowest burnup
and total duration time, and the highest neutron leakage.
The out—in partition alternate pattern has slightly higher
burnup, longer total duration time and smaller neutron
leakage than that of the out—in loading pattern at the cost of
sacrificing some neutron flux distribution and power dis-
tribution. However, its alternative distribution of fuel
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elements cut down the refueling time. The low-leakage
pattern is the second highest in burnup, and total duration
time, and its neutron flux and power distributions are the
second most uniform.

Keywords BFAMSR - Fuel elements - Fuel management
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1 Introduction

The Generation IV reactors include gas-cooled fast
reactor (GFR), lead-cooled fast reactor (LFR), molten salt
reactor (MSR), sodium-cooled fast reactor (SFR), super-
critical-water reactor (SCWR) and very-high-temperature
reactor (VHTR) chosen in the Generation IV initiative
Forum [1, 2]. As an old concept, the research of MSR
began in the 1950s in Oak Ridge National Laboratory
(ORNL) [3-6], aimed at online refueling and recycling of
nuclear fuel. Solid fuel MSR, a new concept of reactor
proposed in the USA in 2010, uses ceramic coated particles
as fuel carrier, and takes the advantage of the high heat
capacity and thermal conductivity of the molten salt, giving
full play to the merit of coated fuel particles. The repre-
sentative designs include the advanced high-temperature
reactor (AHTR) [7, 8] by ORNL and the pebble-bed
advanced high-temperature reactor (PB-AHTR) [9] by UC
Berkeley. AHTR uses the plate-shaped coated particle fuel
elements, whereas PB-AHTR uses fuel pebbles containing
TRISO-coated particles to achieve online refueling through
movement of fuel pebbles inside molten salt. The project of
thorium-based Molten Salt Reactor (TMSR) was initiated
by the Chinese Academy of Science in 2011 [10], aiming at
building a 2-MW fluid fuel Molten Salt Experiment
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Reactor and a 10-MW solid fuel Molten Salt Experiment
Reactor. The 10-MW solid fuel TMSR is a pebble-bed
reactor similar to the PB-AHTR, to achieve high-temper-
ature heat output for efficient electric and hydrogen
production.

Although the nuclear fuel utilization efficiency can be
greatly improved through the online refueling benefited
from the use of pebble fuel elements, the reactor operation
is facing difficulties due to the complex mechanical
structure. It is therefore important to establish an efficient
loading technology for solid fuel MSR.

We designed a solid fuel MSR by adopting fuel
assemblies composed of TRISO fuel pebbles filling inside a
container made of C—C composite [11]. This kind of peb-
ble-bed reactor is called as Basket-Fuel-Assembly Molten
Salt Reactor (BFAMSR). The BFAMSR enables the uti-
lization of mature fuel loading techniques similar to that of
water cooled reactors. To achieve deeper burnups, water
reactor fuel loading patterns can be applied directly. The
fuel loading patterns for water reactors [12—17] include the
in—out loading, out—in loading, out—in partition alternate
loading and low-leakage loading patterns. In this paper, we
give a detailed analysis of the loading patterns based on the
10-MW BFAMSR.

2 Modeling of BFAMSR for MCNPX simulation

The 10-MW BFAMSR is composed of an active area
and the reflector, with a core in radius of 1.6 m and height
of 3.2 m. As shown in Fig. 1, both the active area and side
reflector are composed of hexagonal blocks. The fuel
assembly hexagonal block is 34.73 cm in side width and
2 m in height. It consists of six triangular prism fuel
elements or five triangular prism fuel elements and one
control rod channel (Fig. 2). Each triangular prism fuel
element is composed of a 1-cm-thick triangular prism can
made of C/C composite and 99 fuel pebbles. Fuel pebbles
are loaded in the triangular prism can with three pebbles

Triangular prism

element

1. Fuel assembly
2. Fuel assembly

with control rod
3. Graphit

1. Fuel pebble
2.Triangular prism can
3. FLiBe liquid salt

Fig. 1 (Color online) Schematics of the BFAMSR core
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Fig. 2 (Color online) Hexagonal fuel assemblies without a and with
b control rod channel

in each layer. As shown in Fig. 1, the TRISO particles are
treated with simple cubic structure distributed in the fuel
pebbles. There is a TRISO particle in each small cube,
and each TRISO particle is composed of five parts
(Fig. 1). Two inner concentric rings of fuel assembly
hexagonal blocks form the active area, whose periphery is
surrounded by the side reflector. Besides, there is a
60-cm-thick reflector in the bottom and the top of the
core, respectively. The 10-MW BFAMSR has 12 control
rod channels dispersed in the two concentric rings of the
core. The control rods are kept full extracted during the
operation of the reactor because we focused only on the
neutronic and burnup analysis. All the control rod chan-
nels are hollow cylindrical pipe made of carbon material.
The geometry data of the 10-MW BFAMSR are given in
Table 1, and the material data and temperatures are given
in Table 2. As shown, high enriched "Li (99.995%) is
used.

MCNPX (version 2.5.0) was used in the burnup calcu-
lation. It is a Monte Carlo radiation transport calculation
code written in Fortran 90 language, prepared by the
LANL, which considers almost all particles in various
energies [18]. The nuclear data library based on the JEF-
2.2 [19, 20] and the database expanded from JENDL3.2,
ENDF/B-6.8, DCL-200 and EAF-99 were used in the cal-
culation. The triple heterogeneity of the BFAMSR was
treated with the three-dimensional model. Evolution of the

TRISO particle
45 3

1. Fuel layer 1.Fuel oxide
2. Graphite 2. Porous carbon
3. & 5. Pyricarbon

4. Zirconium carbide
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Table 1 Geometry data of the

10-MW BEAMRS Parts Parameters Value
Core Radius (cm) 160
Height (cm) 320
Power (MW) 10
Hexagonal fuel assembly Number: Without control rod 6
With control rod 12
Width (cm) 34.73
Height (cm) 200
Interstitial gap (cm) 0.05
Control rod channel (in cm) Radius: inner/outer 5.50/5.75
Height (cm) 262
Fuel pebble Number 9504
Radius (cm) 3
Volume fraction (%) 48.6
Packing factor of particles 20
TRISO particles (in cm) Kernel radius 0.025
Width: Porous carbon layer 0.009
Inner pyrocarbon layer 0.004
SiC layer 0.0035
Outer pyrocarbon layer 0.004

Table 2 Material data of the 10-MW BFAMSR

Material Atomic percentage (%)

Temperature (°C)  Initial density (g/cm®)

TRISO kernel

TRISO porous graphite C (100)
TRISO pyrocarbon C (100)
TRISO silicon carbide Si (50); C (50)
Graphite in the pebble C (100)
C/C composite C (100)
Reflector C (100)

FLiBe molten salt (99.995% Li)

257 (5.7267); 23U (27.6066); '°0 (66.6667)

SLi (0.0014); "Li (28.5700); “Be (14.2857); '°F (57.1429)

706.1 10.5

700.4 1.1

696.4 1.9

695.1 3.18
675.2 1.73
615.5 1.9

615.5 1.76
615.5 1.9793898

fuel composition with a continuous energy approach was
simulated. The burnup by the MCNPX’s first run of
10 days was simulated, so as to make the reactor come to
the balance of Xe nucleus, and then the burnup was sim-
ulated in 30-day steps. Totally 1.25 million particles were
simulated in 125 cycles, of which 100 cycles were active
[21].

3 Fuel management strategy

The use of fuel assembly in BFAMSR enables the
application of relatively mature loading patterns of water
reactors, i.e., the in—out loading, out—in loading, out—in
partition alternate loading and low-leakage loading pat-
terns. BFAMSR is originally designed for hexagonal
assembly replacement, but owing to the small core size of
10-MW BFAMSR, the base unit of fuel replacement in this
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Fig. 3 (Color online) In—out loading pattern
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study is taken as the triangular prism fuel elements. The
four patterns involved in this study are all 4-batche pat-
terns, and the discharge number of triangular prism fuel

Fig. 4 Approach to the
equilibrium, /2 periods in
Pattern 1. Region 1 is filled with
fresh fuel. The left four columns
report the neutron flux

(10" n em™2 s7Y), the mass (in
kg) and the burnups (in GWd/t)
at the beginning of the
irradiation periods and at the
end of the irradiation periods.
The last column reports the
beginning time, the k¢ at the
beginning time, the end time
and the k. at the end time of
the cycle
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elements in each refueling is 24. For simplicity, the initial
U-loading quantity of fuel elements in each region for the
four patterns is the same, i.e., the concentration of 230 is
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17% and TRISO packing factor is 20%. The refueling time
is 30 days.

3.1 The analysis of the fuel management strategy
3.1.1 Pattern 1: in—out loading pattern

In Pattern 1, the active area is divided into four regions,
i.e., Regions 1, 2, 3 and 4. When refueling, the fresh fuel
elements are loaded in Region 1 in the innermost side of
the active area, the fuel elements being burned for one
cycle in Region 1 are moved to Region 2, the fuel ele-
ments being burned for two cycles in Region 2 are moved
to Region 3, and the fuel elements being burned for three
cycles in Region 3 are moved to Region 4 which is in the
outermost side of the active area. The fuel elements being
burned for four cycles in Region 4 are discharged. That is
to say, after each cycle the burned fuel elements in Region
4 are discharged and the fuel elements from the first to
third region are transferred to the next region, respec-
tively, and the new fuel elements are loaded in Region 1
(Fig. 3).

At beginning of the life, all the four regions were loaded
with fresh triangular prism fuel elements. At the end of
each cycle, the fuel elements were arranged according the
ways for refueling mentioned above. Figure 4 detailed
some important parameters in each region before and after
each cycle. In the left side of Fig. 4, from Column 1 to
Column 4 (corresponding to Region 1 to Region 4,
respectively), are the neutron flux (1073 eV-20 MeV),
quantity of **°U, quantity of *°Pu and burnup in each of
the regions. Column 5 of Fig. 4, from top to bottom, gives
the beginning time, the effective neutron multiplication
factor k¢ at the beginning, the end time of the cycle, the
ke at the end of the cycle and duration of the cycle. From
Fig. 4, the first cycle lasts for the longest time, up to
1695 days, and the burnups in all the four regions reach
more than 85 GWd/t. However, duration for the second
cycle reduced to 555 days. That is because in the first cycle
all the four regions are filled with fresh fuel elements which
give enough excess reactivity for longtime running. But in
the second cycle, fresh fuel elements are filled in just
Region 1, while the other regions are filled with spent fuel
elements burned at least for one cycle. After several times
of rise and fall, the cycle time reaches an equilibrium value
of 630 days at the 9th cycle. After 12 cycles of operation, a
total duration of 8765 days is reached, including
11 x 30 = 330 days shutdown time for refueling. After
the equilibrium, the time evolution of 235U and >°Pu
quantities and the burnups in each of the regions are
tending to stable. For Regions 1-4, the equilibrium dis-
charge quantities of *°U is 4.957, 3.333, 2.258 and
1.485 kg, respectively; the equilibrium discharge quantities

of #*°Pu is 0.2491, 0.2745, 0.2300 and 0.1697 kg, respec-
tively; and the equilibrium burnups is 54.4, 91.8, 120.5 and
143.4 GWd/t, respectively.

3.1.2 Pattern 2: out—in loading pattern

Contrary to Pattern 1, in the out—in loading pattern, the
active area is divided into four regions from the outside to
inside. Region 1, where the fresh fuel elements are loaded
after each cycle, is in the outermost side of the active area.
The ones spent for one cycle are loaded in Region 2. The
ones spent for two cycles are loaded in Region 3. And the
ones spent for three cycles are loaded in Region 4 which is
in the innermost side of the active area. When refueling,
the spent fuels in Region 4 are removed, and the fuel
elements in the first to third region (Regions 1, 2 and 3) are
transferred into the next region (Regions 2, 3 and 4),
respectively (Fig. 5).

At beginning of the life, all the four regions were loaded
with fresh fuel elements. At the end of each cycle, the ways
described in Sect. 3.1.1 were followed for loading,
unloading and refueling. The cycle parameters for each
region are shown in Fig. 6. Obviously, the parameter
change in the first cycle and the corresponding burnups in
all the regions are just the same as those in Pattern 1. The
second cycle duration decreased greatly to 425 days, rather
than 630 days of Pattern 1. The reason is that in Pattern 1
the fresh fuel elements are loaded in the inner side, and due
to the high neutron flux in the inner side, the fresh fuel can
provide higher excess reactivity (note that the second cycle
in Pattern 2 begins with a k.g of 1.087, but it is 1.125 in
Pattern 1). Starting from the third cycle, the cycle time
varies and comes to an equilibrium value of about 590 days

Fig. 5 (Color online) Out—in loading pattern
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Fig. 6 Approach to the
equilibrium, /2 periods in
Pattern 2. Region 1 is filled with
fresh fuel. The left four columns
report the neutron flux

(1013 ncm~?2 s_l), the mass (in
kg) and the burnups (in GWd/t)
at the beginning of the
irradiation periods and at the
end of the irradiation periods.
The last column reports the
beginning time, the k¢ at the
beginning time, the end time
and the k¢ at the end time of
the cycle
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Fig. 7 (Color online) Out—in partition alternate loading pattern

in the 9th cycle. After 12 cycles the total duration time is
8285 days (including shutdown time for refueling) with an
equilibrium cycle length of 590 days. For Regions 1-4, the
equilibrium quantities of *>U are 5.488, 3.888, 2.669 and
1.698 kg, respectively; the equilibrium quantities of ***Pu
are 0.1573, 0.2277, 0.2490 and 0.2171 kg, respectively;
and the burnups for the four regions are 43.0, 76.8, 106.7
and 134.7 GWd/t, respectively (Fig. 7).

3.1.3 Pattern 3: out—in partition alternate loading pattern

The out—in partition alternate loading pattern (Pattern 3),
a traditional loading pattern for pressurized water reactor,
was developed on the basis of Patten 2. The active area is
divided into four regions just the same as Pattern 2, and
after each cycle the fresh fuel elements are loaded in
Region 1, the outermost of the active area. Different from
Pattern 2, in the first refueling, the fuel elements spent for
one cycle in Region 1 are loaded in Region 4, with its fuel
elements having been discharged. The other regions are
kept unchanged. In the second refueling, the ones spent for
one cycle in Region 1 are loaded in Region 3, with its fuel
elements having been discharged. Again the other regions
are kept unchanged. In the third refueling, the ones spent
for one cycle in Region 1 are loaded in Region 2, with
other regions being kept unchanged. All the other refuel-
ings repeat the above processes: Region 1 — Region 4,
Region 1 — Region 3, Region 1 — Region 2 and so on.

At beginning of the life, all the four regions were loaded
with fresh fuel elements. At the end of each cycle, the
loading, unloading and refueling follow the ways described
above. Figure 8 shows the cycle parameters for each
region. Obviously, the parameter change in the first cycle is

almost the same as those in Patterns 1 and 2, except slight
differences caused by the partition alternate arranging
mode. Due to the dispersive arrangement of regions in the
active area center, the burnups are almost the same in
Regions 2-4), about 92.2 GWd/t, but lower in Region 1,
89.8 GWd/t. Duration of Cycle 2 reduced greatly to
375 days, even lower than that in Pattern 2. The reason is
the lower total loading quantity of *°U, resulting from the
larger discharge quantity of 2>>U in the first cycle. Then,
the cycle time varies and comes to an equilibrium value of
605 days. After 12 cycles the total duration is 8355 days
(including shutdown time for refueling). The process to
equilibrium is longer than those of the other patterns. This
is because that the distribution of the fuel elements in three
regions in this pattern is uneven due to the small reactor
size. In a larger size reactor, such case would not happen.
For Regions 1-4, the equilibrium quantities of **°U are
5.451, 1.657, 3.689 and 2.519 kg, respectively; the equi-
librium quantities of ***Pu are 0.1525, 0.2317, 0.2264 and
0.2338 kg, respectively; and the burnups are 43.7, 135.6,
81.0 and 110.2 GWd/t, respectively. The equilibrium dis-
charge quantities of **°U and **Pu are 1.657 and
0.2317 kg, and the equilibrium discharge burnup is
135.6 GWd/t.

3.1.4 Pattern 4: low-leakage loading pattern

Combining the advantages of Patterns 1-3, the low-
leakage loading pattern was developed in the late 1970s,
which has been used in the most of the PWR nuclear
plants in the world. In Pattern 4, fresh fuel elements are
loaded in Region 1, which is in the submargin of the
active area after each cycle. The ones spent for one cycle
are loaded in the Region 2. The ones spent for two cycles
are loaded in the Region 3. And the ones spent for three
cycles are loaded in the Region 4. Regions 2—4 are dis-
persedly alternately arranged (Fig.9). In refueling, the
spent fuels in Region 4 are removed, and the fuel ele-
ments in Regions 1-3 are transferred into the next region
(Regions 2—4), respectively. That is to say, fuel elements
in Region 4 are discharged, and fuel element loadings are
Region 3 — Region 4, Region 2 — Region 3, Region
1 — Region 2, and new fuel elements are loaded in
Region 1.

At beginning of the life, fresh fuel elements were
loaded. At the end of each cycle, the loading, unloading
and refueling were done as described previously. Fig-
ure 10 details the cycle parameters for each region.
Obviously, the parameter change in the first cycle is just
the same as that in Patterns 1 and 2, and the corresponding
burnup in all the regions is the same. The discharge
quantity (3.232 kg) of **°U at the end of the first cycle is
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Fig. 8 Approach to the
equilibrium, 12 periods in
Pattern 3. Region 1 is filled with
fresh fuel. The left four columns
report the neutron flux

(1013 ncm~?2 s_l), the mass (in
kg) and the burnups (in GWd/t)
at the beginning of the
irradiation periods and at the
end of the irradiation periods.
The last column reports the
beginning time, the k¢ at the
beginning time, the end time
and the k¢ at the end time of
the cycle

smaller than Pattern 3 but larger than Pattern 2, and the
second cycle time is 395 days. Then, the cycle time varies
and finally reaches an equilibrium value of 610 days in
Cycle 9. After 12 cycles, the total duration time is
8500 days (including shutdown time for refueling). For
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od
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1.10974
2695d
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3315d
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3345d
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3985d
1.00117
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4015d
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4605 d
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590d

4635d
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5215d
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5840 d
1.00076
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5870 d
1.12024
6485 d
1.00112
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1.00032
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1.11391
7720d
1.00166
580d

7750d
1:12222]
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605 d

Regions 1-4, the equilibrium quantities of *>U are 5.566,
3.695, 2.407 and 1.577 kg, respectively; the equilibrium
quantities of *°Pu are 0.2047, 0.2570, 0.2140 and
0.2206 kg, respectively; and the burnups are 41.8, 92.2,
114.8 and 139.3 GWd/t, respectively.
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Fig. 9 (Color online) Low-leakage loading pattern

3.2 Analysis of important physical parameters

Table 3 details key physical parameters in the cycle
process of the four patterns after reaching equilibrium.
They can serve as a measure of the reactor performance.
The total duration time, cycle length and the total discharge
quantity of *>U can measure the reactor economy. The
total discharge quantity of **°Pu and burnups can be used
to evaluate the ability of proliferation resistant. Uniformi-
ties of the neutron flux distribution and power distribution
can be a measure of the reactor security. To evaluate the
uniformities, the average neutron flux (f) and the power
fraction of each region are compared with the parameters
of K= [(fmax — fmin)fmax] x 100% and 6 = CPmax — -
CPmin» Where finax and fi;, are the maximum and minimum
values of the average neutron flux in four regions of each
pattern, and cpyax and cppni, are the maximum and mini-
mum power fraction among the four regions.

For Pattern 1, the fresh fuel elements are loaded in the
innermost side of the active area, which can smooth the
burnup and increase the average discharge burnup, and due
to loading of fresh elements in the central region, the
neutron leakage of the reactor is relatively low, which
prolongs the total duration time. From Table 3, Pattern 1
has the largest discharge burnup (143.4 GWd/t), the long-
est total duration (8755 days) and cycle length (630 days),
the lowest total discharge quantity of **°U (20.36 kg) and
3%y (2.02 kg). These suggest a high economic efficiency
of Pattern 1. The main drawback of this pattern is its larger
uneven distribution in neutron flux and power, which can
greatly limit power level of the reactor. The p value of
Pattern 1 is 45.38%, meaning that the maximum neutron
flux is almost double of the minimum neutron flux.

Contrary to Pattern 1, due to loading of fresh fuel ele-
ments in the margin of the active area, Pattern 2 features
the most uniform neutron flux distribution and power dis-
tribution, with g = 12.18 and 6 = 14.92%, the lowest of
all in Table 3. The shortcoming of this pattern is its larger
neutron leakage due to that the fresh fuel elements are
loaded in the margin of active area. This reduces eco-
nomics as seen from the shortest total duration of
8285 days, shortest cycle length of 590 days, the decreased
burnups of 134.7 GWd/t and the highest total discharge
quantity of **°U (22.07 kg).

Pattern 3 is developed on the basis of Pattern 2. Loading
the fresh fuel elements in the outermost active area and
dispersedly loading the spent fuel elements in other active
areas flatten the neutron flux distribution in the entire
reactor core and reduce the overall power peak factor. As
shown in Table 3, u and ¢ are a little higher than those of
Pattern 2, but still significantly lower than that of Pattern 1.
The refueling is to remove the fuel elements spent for four
cycles in an inner regions, fill it with the fuel elements
spent for one cycle in an outer region and load the fresh
fuel elements in the outermost region, hence no need to
move all fuel elements every time and a reduced refueling
time. The shortcoming of this pattern is its low discharge
burnup.

Pattern 4 combines the advantages of Patterns 1-3. Its
advantage is that, due to the deeply burned fuel elements
siting in the outermost active area, and the fresh fuel ele-
ments being loaded close to the outermost active area, the
reactor features a lower neutron flux in the margin of active
area and therefore reduces the neutron leakage, improving
the neutron utilization and extending the total duration. It
has a total duration time of 8500 days, a cycle length of
610 days, a total *°U discharge quantity of 21.09 kg, a
total 2>’Pu discharge quantity of 2.60 kg and a final dis-
charge burnup of 139.3 GWd/t, which are the second best
after Pattern 1, but its 4 = 13.7 and 6 = 15.99% are the
second the best after Pattern 2, meaning a superiority in
safe operation of the reactor.

Figure 11 shows the power fraction taking by each
region with the cycles for Patterns 1-4. Figure 12 com-
pares the cycle burnup and the discharge burnup of Patterns
1-4 at each cycle. From Fig. 11, all patterns reach rough
equilibrium after nine cycles. Pattern 2 has the most uni-
form power distribution, followed by Pattern 4. From
Fig. 12, Pattern 1 has the highest cycle burnup and dis-
charge burnup, followed by Pattern 4.

3.3 Neutron flux
For the reactor reaching equilibrium, we calculated the

average radial neutron flux (ARNF) (from 107% eV to
20 MeV) at beginning and end of the cycle (BOC and
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Fig. 10 Approach to the
equilibrium, 12 periods in
Pattern 4. Region 1 is filled with
fresh fuel. The left four columns
report the neutron flux

(1013 ncm~?2 s_l), the mass (in
kg) and the burnups (in GWd/t)
at the beginning of the
irradiation periods and at the
end of the irradiation periods.
The last column reports the
beginning time, the k. at the
beginning time, the end time
and the k¢ at the end time of
the cycle

EOC) in the active area. As shown in Fig. 13, in the active
area of R < 60 cm, Pattern 1 has the steepest curve, indi-
cating a very uneven flux distribution, while Pattern 2 has
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 —

 —

 —

©=6.36-6.80
B9U=2.352-1.542
#9pu=0.2087-0.2139
Burnup=116.2-140.4

©=6.37-6.81
2U=3.657-2.386
29pu=0.2501-0.2084
Burnup=83.0-115.3

®=7.39-7.91
5U=5.614-3.735
29pu=0.1943-0.2502
Burnup=40.7-81.1

©=6.41-6.82

#9U=7.853-5.573
P%pu=0 -0.1973
Burnup=0 -41.5

 —

D —

 —

0=6.36-6.81
9U=2.386-1.568

Z9pu=0.2084-0.2140

Burnup=115.3-140.0

©=6.37-6.82
PU=3.735-2.443
Pu=0.2502-0.2096
Burnup=81.1-114.2

©=7.37-7.92
U=5.573-3.711

9pu=0.1973-0.2497
Burnup=41.5-82.3

©=6.39-6.83
#9U=7.853-5.583
PPpu=0  -0.1967
Burnup=0 -42.1

 —

 —

 —

©=6.35-6.80
P9U=2.443-1.602
29pu=0.2096-0.2140
Burnup=114.2-138.9

0=6.36-6.81
PU=3.711-2.419
29py=0.2497-0.2092
Burnup=82.3-114.9

©=7.39-7.90
#9U=5.583-3.709
29py=0.1967-0.2503
Burnup=42.1-82.6

©=6.38-6.81
#5U=7.853-5.570
pu=0 -0.1978
Burnup=0 -41.7

 —

 —

 —

©=6.34-6.80
PU=2.419-1.585

9Pu=0.2140-0.2150

Burnup=114.9-139.6

©=6.37-6.81
250=3.709-2.417
9pu=0.2503-0.2088
Burnup=82.6-115.3

©=7.38-7.90
5U=5.570-3.697

9pu=0.1978-0.2517
Burnup=41.7-82.1

©=6.38-6.81
U=7.853-5.566
Ppu=0  -0.1977
Burnup=0 -41.7

 —

N

 —

©=6.34-6.80
P9U=2.417-1.583

29pu=0.2088-0.2148

Burnup=115.3-140.0

©=6.37-6.81
9U=3.697-2.407
29pu=0.2517-0.2090
Burnup=82.1-114.7

©=7.38-7.90
#9U=5.566-3.696
29pu=0.1977-0.2506
Burnup=41.7-82.2

©=6.38-6.81
9U=7.853-5.565
pu=0  -0.1970
Burnup=0 -41.7

N

 —

 —

©=6.35-6.79
PU=2.407-1.577

#9Pu=0.2090-0.2206

Burnup=114.7-139.3

©=6.36-6.79
25U=3.696-2.407

9pu=0.2506-0.214

Burnup=82.2-114.8

©=7.36-7.90
P5U=5.565-3.695

#9pu=0.1970-0.2570
Burnup=41.7-82.2

©=6.39-6.81
5U=7.853-5.566
Ppu=0  -0.2047
Burnup=0 -41.8

od
1.28276
1695d
1.00067
1695d

1725d
1.08018
2120d
1.00221
395d

2150d
1.11216
2705d
1.00159
555d

2735d
1.12092
3360d
1.0005
625d

3390d
1.1274
4040d
1.00096
650d

4070d
1.11565
4660 d
1.0015
590d

4690 d
1.1207
5295d
1.00119
605d

5325d
1.12104
5940d
1.00185
615d

5970 d
1.12343
6580 d
1.00305
610d

6610 d
1.12039
7220d
1.00248
610d

7250d
1.12128
7860 d
1.00172
610d

7890 d
1.12022
8500 d
1.00237
610d

the most uniform flux distribution. Table 4 compares the
neutron flux (@) at R = 10 cm and R = 60 cm at BOC and
EOC for Patterns 1-4. The ratio between them, ®(60)/
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Table 3 Important physical

parameters of four patterns after Items Pattern 1 Pattern 2 Pattern 3 Pattern 4
reaching equilibrium Total time (d) 8755 8285 8355 8500
Cycle length (d) 630 590 605 610
Total discharge quantity of ***U (kg) 20.36 22.07 21.78 21.09
Total discharge quantity of **Pu (kg) 2.02 2.61 2.82 2.60
u (%) 4538 12.18 15.96 13.72
5 (%) 255 14.92 16.2 15.99
Discharge burnup (GWd/t) 143.4 134.7 135.6 139.3
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Fig. 11 (Color online) Power fraction in Regions 1—4 for Patterns 1-4 during the first 12 periods of running

®(10), is used to characterize the uniformity of ARNF.
Pattern 1 has the smallest ratio, revealing that the neutron
flux distribution is of the most uneven one. On the contrary,
Pattern 2 has the largest ratio, close to 1, meaning that the
neutron flux distribution is very uniform. The ratios for
Patterns 3 and 4 are about 0.8, indicating that their neutron
flux distribution is better than that of Pattern 1.

The region of R > 80 cm in Fig. 13 belongs to the
reflector region, where the neutron flux can be used to
understand the extent of the neutron leakage. Table 5
details the neutron flux at R = 80 cm and R = 100 cm for

Patterns 1-4 and the average neutron flux in the range of
0 < R<60 cm. Pattern 1 has the lowest neutron leakage,
followed by Patterns 4, 3 and 2.

4 Conclusion
The use of Basket-Fuel-Assembly in Molten Salt
Reactor enables the utilization of mature fuel loading

techniques similar to that of water cooled reactors. The
present work studied the feasibility of four fuel loading

@ Springer
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Fig. 12 (Color online) Discharge burnup and cycle burnup of
Patterns 1-4 during the first 12 periods of running
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Fig. 13 (Color online) ARNF at BOC and EOC during the first 12
periods of running for the four patterns (P1-P4)

Table 4 Neutron fluxes (1013 nem2 s_l) in the active area at BOC

and EOC of Patterns 1-4, for 10 and 60 cm core radius

Neutron flux ®(60 cm) @(10 cm) ®D(60)/P(10)
Pattern 1
BOC 6.13 10.2 0.5995
EOC 6.67 10.6 0.6277
Pattern 2
BOC 6.44 7.03 0.9168
EOC 6.88 7.43 0.9261
Pattern 3
BOC 6.34 7.60 0.8349
EOC 6.76 8.18 0.8261
Pattern 4
BOC 6.54 8.22 0.7958
EOC 6.98 8.72 0.7998

@ Springer

Table 5 ARNF at BOC and EOC of Patterns 1-4 (10> n cm™2 s71),
at core radius of up to 100 cm

Neutron flux 0 < R<60 cm R =80 cm R =100 cm
Pattern 1
BOC 8.79 4.35 293
EOC 9.24 4.73 3.16
Pattern 2
BOC 6.77 5.37 3.67
EOC 7.22 5.66 3.86
Pattern 3
BOC 7.11 5.24 3.58
EOC 7.65 5.50 3.76
Pattern 4
BOC 7.59 4.90 3.32
EOC 8.09 5.22 3.52

patterns designed for water cooled reactors in BFAMSR,
namely in—out loading pattern, out—in loading pattern, out—
in partition alternate loading pattern and low-leakage
loading pattern, denoted as Patterns 1-4, respectively. The
conclusions are as follows:

Pattern 1 has the largest discharge burnup (143.4 GWd/
t), the longest cycle length (630 days), and the lowest
discharge quantity of U (20.36 kg) and discharge
quantity (output quantity) of ***Pu (2.02 kg). As far as the
economy concerned, Pattern 1 is the best, while as the
safety issue concerned, Pattern 1 is limited by its larger
uneven power distribution.

Pattern 2 features the most uniform neutron flux distri-
bution and power distribution, but with shortcoming of
larger neutron leakage, leading to larger loss of reactivity
which affects the burnup and total duration time.

Pattern 3 is developed based on Pattern 2. Benefit from
the alternate partition of fuel elements, the discharge bur-
nup and the cycle length are recovered to a certain extent.
Meanwhile, in the alternate partition loading pattern not all
the fuel elements need to be moved, therefore greatly
reducing the time for refueling.

Pattern 4 combines all the advantages of the other three
patterns. Loading the fresh fuel elements in the submargin
of the active area not only overcomes to a great extent
neutron leakage, but also flats the flux distribution and
power distribution. Due to the small reactor core size
concerned in the present work, the outermost located fuel
elements spent for two or three cycles could not stop
neutron leakage effectively. But this situation will be much
improved in high-power reactors.

The basic rules obtained in analyzing this 10-MW
reactor can be applied to large reactors. It is believed that
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the study is of great reference value for future design of
fuel management for high-power molten salt reactors.
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