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Abstract The gap parameter of the standard BCS model is

replaced by the order parameter of the modified Ginzburg–

Landau theory. Using this new form of the BCS model, the

energy, entropy, and heat capacity of 93;94;95Mo nuclei are

calculated. The results are compared with the experimental

data and standard BCS results. Since the order parameter

does not drop to zero at a critical temperature, our results

for thermal properties are free of singularities. We have

shown that the heat capacity as a function of temperature

behaves smoothly and it is highly in agreement with the

experimental heat capacity, while heat capacity behaves

singularly and discontinuously in the standard BCS model.

A smooth peak in the heat capacity is observed which is

interpreted as a signature of the transition from the super-

fluid to the normal phase.

Keywords BCS � Ginzburg–Landau � Statistical
fluctuations

1 Introduction

Systems of paired fermions are present in different

fields of physics, and their size ranges from astronomical

objects, such as neutron stars, to small systems, such as

nuclei. Regardless of the origin of the pairing potential

between fermions, the BCS [1–8] model and it’s number

projected versions [9–12] are the most popular tools used

in investigations of paired systems. An important step in

deriving BCS equations is finding the gap parameter. This

parameter is the measure to find whether the system is in

the paired phase or not. In the standard BCS model, we

choose the most probable values of gap parameter, which

are the values of gap parameter that minimize the free

energy [2, 13]. This choice seems to be relevant when the

number of constituents of the system are from the order

of Avogadro’s number. But when the number of particles

decreases by orders of magnitude and we are dealing with

a finite system such as nuclei, this choice is not the best

one. In a finite system, the probability which the system

remains in the states that are not the free energy mini-

mum can be comparable with the probability of being in

the free energy minimum [13]. Based on this fact, some

authors used the mean value of gap parameter in place of

the most probable value of it [13, 14]. In this method, the

grand potential of the BCS model was used as the dis-

tribution function that reveals the importance of different

values of the gap parameter at each temperature, and

finally the mean value of the gap parameter can be cal-

culated by integrating different values of the gap param-

eter weighted by this distribution function. Since

calculating the mean value of the gap parameter is

mathematically complicated, we are interested in the

replacement method that can do the same job. Static path

approximation(SPA) [15, 16] and it’s modified versions

[17–19] are the methods that systematically take the

effect of statistical fluctuations into account and can be

used in investigation of the paired finite systems. But
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since these methods are even more complicated than the

mean value BCS, we try to use simpler methods.

Recently, an exact version of the Ginzburg–Landau

(EGL) [20, 21] theory of second-order phase transitions

was used in investigation of the thermal properties of

nuclei. The EGL takes the effect of statistical fluctuations

in a finite systems into account by averaging all of the

possible order parameters. This procedure is in close

analogy with the mean value BCS model. The order

parameter of EGL plays the same role as the gap parameter

of the BCS, and it seems to be a reasonable choice of a gap

parameter that takes the effect of statistical fluctuations into

account.

In this paper, we use the order parameter of the EGL as

the gap parameter of the BCS model. Using this new for-

mula for determining the gap parameter, the thermal

properties, such as energy, entropy, and heat capacity of
93;94;95Mo nuclei, are calculated. In the case of heat

capacity, the results are compared with the experimental

heat capacities. In the first part of the paper, we express the

used theories. In the second part, we discus the numerical

method and results, and finally, we summarize the results.

2 Model

In the BCS model, all of the thermal properties are

extracted from the grand potential, X, of the system, which

can be written as [2]:

X¼�b
X

ðek�k�EkÞþ2
X

lnð1þ expð�bEkÞÞ�b
D2

G
;

ð1Þ

where ek is a single-particle energy of particles, Ek ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðek�kÞ2þD2

q
is quasi-particle energy, G is the pairing

strength, k is the chemical potential, and b¼ 1
T
, where T is

the temperature. In this equation, D is the gap parameter,

which is a measure of the pairing correlation . The standard

choice for the gap parameter is the value that minimizes the

grand potential:

oX
oD

¼ 0; ð2Þ

which leads to the BCS gap equation

X 1

Ek

tanh
1

2
bEk

� �
¼ 2

G
: ð3Þ

Using this gap equation, the thermodynamic quantities of

the system, such as the number of particles, N, the energy

of the system, E, and the entropy, S, will be obtained in the

following form:

N ¼ oX
oa

¼
X

1� ek � k
Ek

tanh
1

2
bEk

� �� �
ða ¼ bkÞ; ð4Þ

E ¼ � oX
ob

¼
X

ek 1� ek � k
Ek

tanh
1

2
bEk

� �� �
� D2

G
;

ð5Þ

S ¼ X� aN þ bE ¼ 2
X

ln½1þ expð�bEkÞ�

þ 2b
X Ek

1þ expðbEkÞ
:

ð6Þ

Neglecting the small change in k as a function of temper-

ature, the heat capacity, C, will be [13]

C ¼ 1

T

dS

dT
¼ 1

2

X
sech2

1

2
bEk

� �
b2E2

k � bD
dD
dT

� �
; ð7Þ

where

dD
dT

¼
1
2

P
sech2 1

2
bEk

� �

D b
2

P sech2 1
2
bEkð Þ

E2
k

�
P tanh 1

2
bEkð Þ

E3
k

� � : ð8Þ

Investigation of the thermal properties of finite systems,

such as nuclei, with the above formulation predicts

unphysical results. For example, when we compare the

calculated heat capacity as a function of temperature

(Eq. 8) with the experimental data of heat capacity

[22–27], an important issue emerges. Calculated heat

capacity shows a singularity at the critical temperature,

which is observed in the experimental data in the form of a

smooth S-shaped peak. This singularity is a consequence of

the choice that was made in choosing the gap parameter. In

fact, when dealing with the finite systems, the grand

potential minimum is the most probable state of the system,

but there are other states with considerable probabilities

that are not the grand potential minimums and should be

taken into account. So it seems necessary to search for such

averaged gap parameters and replace them with the stan-

dard gap equation (Eq. 3).

The averaged gap parameter that we use in this paper is

the order parameter of the EGL model [21]. There are some

typos in the relation for the average absolute value of the

order parameter (equation 16 of Ref. [21]), and the correct

form is:

DðTÞ ¼
Tcp

3
2

R1
0

k
1
2e

� p
ffiffi
�b
t �d

p
kþp t�1ð Þ

2
ffiffiffiffi
t �b �d

p
	 
2

dk
ffiffiffiffi
�d
2�b

q
t
1
2 1� erf Dt

t
1
2

���
���

	 
	 
 ; ð9Þ

where erf is the error function, d is the single-particle

energy spacing of single-particle energy states, and Tc is

the critical temperature of the system. The paired system

shows a phase transition at this temperature when the size

of the system increases to a macroscopic scale. The upper
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sign in denominator applies for T\Tc and the lower

sign applies when T[ Tc. In this formula,

Dt ¼ 1
2
p t� 1ð Þ= �b�d

	 
1
2

, t ¼ T
Tc
, �b ¼ 7f 3ð Þ=16 ¼ 0:526, and

�d ¼ d=kBTc.
Using the averaged value of the gap parameter in place

of the gap equation (Eq. 3), we will have the following

equations for thermal properties:

N ¼ oX
oa

¼
X

1� ek � k
Ek

tanh
1

2
bEk

� �� �
; ð10Þ

E ¼ � oX
ob

¼
X

ek 1� ek � k
Ek

tanh
1

2
bEk

� �� �
�

�D2

G

� �D2 þ b �D
o �D
ob

� � X tanh 1
2
bEk

� �

Ek

� 2

G

� �
;

ð11Þ

S ¼ 2
X

ln½1þ expð�bEkÞ� þ 2
X bEk

1þ expðbEkÞ

þ b2 �D
o �D
ob

2

G
�
X tanh 1

2
bEk

� �

Ek

� �
;

ð12Þ

where Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðek � kÞ2 þ D

2
q

. It is important to note that

since the DðTÞ does not depend on a, the above relations

for the BCS model with an average gap parameter are the

same as the equations expressed in Ref. [14] if we put
o �D
oa ¼ 0. The heat capacity can be numerically calculated,

using the relation: C � �b dS
db.

3 Results and discussion

In this section, we investigate the thermal properties of
93;94;95Mo nuclei using both the above formulations of the

BCS model and try to clarify the differences between two

methods.

In both methods that were mentioned before, two

parameters should be calculated at each temperature: gap

parameter, D, and chemical potential, k. The equations that
are used in the BCS model for determining these parame-

ters are Eqs. (4) and (3), which should be solved simulta-

neously at each temperature. When we use the mean value

of the gap parameter, Eqs. (9) and (10) should be used.

At the beginning, we should find a set of single-particle

energy states. We have used the single-particle energy

states of the deformed shell model [28–31] for protons and

neutrons. The dipole deformation parameter, b2, values

were chosen from Ref. [26]. The parameters that were used

in our calculations are tabulated in Table 1.

At the first step, we calculate the pairing strength, G, by

solving Eqs. (3) and (4) simultaneously at zero tempera-

ture. The gap parameters at zero temperature were

calculated in Ref. [26] using the three-point method. We

used these values in the case of neutrons, but in the case of

protons, slightly different values of the gap parameters

were used which could reproduce the experimental heat

capacity better. The three-point and used values of the gap

parameter are given in Table 1.

The most probable value of the gap parameter, D

(Eq. 3), and the average value of gap parameter, D, (Eq. 9)
of protons and neutrons are plotted as a function of tem-

perature for 93;94;95Mo in Figs. 1 and 2. The average value

gap parameters are normalized to equal the most probable

value of gap parameter at zero temperature. We see that D

reduces to zero suddenly at a critical temperature, while D
decreases gradually and smoothly goes to zero. This

behavior is in agreement with other theoretical predictions

[14, 26] and is correlated with the S-shape of the heat

capacity.

In calculating the average value of gap parameter with

Eq. (9), two parameters should be used: the single-particle

energy spacing of single-particle energy states (d) and the

critical temperature of the system (Tc). d for each nuclei is

calculated from the experimental slow neutron resonances

and ðn; cÞ cross sections that were analyzed according to

the equidistant spacing model [32]. In the formal BCS

model, one can calculate the critical temperature by solving

the gap equation and searching for the temperature at

which the gap parameter vanishes. These calculations

result in approximate relations such as Tc � 0:57Dð0Þ [6]

or Tc ¼ 0:6Dð0Þ [33] between the critical temperature and

the values of Dð0Þ. In this work, since we are not using the

gap equation, the same relation between Tc and Dð0Þ was
not used and we chose a critical temperature that can

reproduce the S-shape of the heat capacity well. The cal-

culated and used values of the parameters are given in

Table 1.

Using the average value of the order parameter and its

derivatives, the energy is calculated from Eq. (11) as a

function of temperature. The total energy is E ¼ Ep þ En

and can be calculated by summing the proton energy with

the neutron energy. The results are plotted in Fig. 3 for
93;94;95Mo in comparison with the most probable energy

which was calculated using Eq. (5). The results show that

both methods are in correspondence at low- and high-

temperature regions and the use of average pairing

parameter causes the energy graph to behave smoothly near

the critical temperature.

Total entropy of a nucleus is calculated by summing the

entropy of protons with the neutrons’ entropy. The total

entropy of the studied nuclei is plotted in Fig. 4 using both

the most probable gap parameter formulation, Eq. (6), and

the average gap parameter formulation, Eq. (12). The same

pattern as in the case of total energy is seen here.
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In Fig. 5, we have plotted the total heat capacities of
93;94;95Mo. The results of the most probable gap parameter

formalism, the average value gap parameter formalism, and

the experimental heat capacities [26] are plotted for com-

parison. It can be observed that using �DðTÞ instead of DðTÞ

Table 1 Used parameters in our calculations (For details see the text)

Nuclei Used Dnð0Þ(MeV) Dnð0Þ[26](MeV) Used Dpð0Þ(MeV) Dpð0Þ[26](MeV) Tc(MeV) b2[26] d(MeV)�1[32]

93Mo 0.85 0.85 1.80 1.60 1.00 0.10 0.13

94Mo 1.20 1.20 1.90 1.60 0.95 0.15 0.13

95Mo 1.10 1.10 1.90 1.50 0.85 0.08 0.12

0
.5
1

1.5
2

BCS 
 Average value BCS

0
.5
1

1.5

0.5 1 1.5 2
0

0.5

1

1.5

Temperature (MeV)

Δ  p
ro

to
n (

M
eV

)

93Mo

94Mo

95Mo

Fig. 1 (Color online) Pairing gap parameter of protons as a function

of temperature. The most probable value and the average value of gap

parameter for protons of 93;94;95Mo are plotted, respectively, by a solid

line and a dashed line
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Fig. 2 (Color online) Pairing gap parameter of neutrons as a function

of temperature. The most probable value and the average value of gap

parameter for neutrons of 93;94;95Mo are plotted, respectively, by a

solid line and a dashed line
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Fig. 3 (Color online) Total energy versus temperature. Total energy

of 93;94;95Mo has been plotted using the average value and most

probable value of the gap parameter

0

20

40
BCS 
 Average value BCS

0

20

E
n

tr
o

p
y 

(k
B

)

0.5 1 1.5 2
0

20

Temperature (MeV)

93Mo

95Mo

94Mo

Fig. 4 (Color online) Total entropy versus temperature. Total entropy

of 93;94;95Mo has been plotted using the average value and most

probable value of the gap parameter
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and also considering thermal fluctuations cause the singular

unreal points in heat capacity to disappear. In order to

study the effect of different choices of critical temperature,

we have also plotted the heat capacity using the critical

temperature of the formal BCS model in this figure. The

critical temperature of BCS is approximately equal with

0:6Dð0Þ. In the case of 94;95Mo, we can see two smooth

peaks in correspondence with the number of peaks of BCS

heat capacity, but since they are smooth, they look like a

single hump. It should be noted that, as shown in Figure 2

of Ref. [20], if the heat capacity of the paired phase of a

small system is calculated using the MGL model, we

observe that the smooth peak of the heat capacity of a

small system is located at some lower temperature when

compared to the critical temperature of the large system.

So the smooth peaks of the mean value calculations do

not occur at the BCS critical temperatures and are

observed at some lower temperatures. In the case of 93Mo,

since the role of neutrons in phase transition is less than

the protons (small Dnð0Þ), the neutrons mean value heat

capacity is too smooth and does not produce a separate

hump, and we just see the hump of the protons heat

capacity in the total heat capacity. In fact, the critical

temperatures that are listed in Table 1 were chosen to

have a single hump in the heat capacity. Calculated heat

capacities agree with the experimental data at the high-

temperature and low-temperature regions well. Therefore,

it can be said that calculated heat capacity using the

average value BCS model exhibits an S-shape, which is in

harmony with the experimental data.

4 Conclusion

In this paper, we have used the BCS model with an

average gap parameter to investigate the thermal properties

of 93;94;95Mo. Since the average gap parameter decreases

smoothly, the energy and entropy graphs versus tempera-

ture behave smoothly near the critical temperature of the

BCS model. With the use of the average gap parameter, the

singular points in heat capacity, which were predicted by

BCS model, disappeared. The heat capacity of the BCS

model with average gap parameter shows the S-shape

which can be seen in the experimental data of heat

capacity.
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