

 Nuclear Science and Techniques, Vol.18, No.4 (2007) 193–197

————————————
* Corresponding author. E-mail: shen@sinap.ac.cn

Received date: 2007-03-14

NUCLEAR
SCIENCE

AND
TECHNIQUES

Web Services interface of SSRF archive data analysis system

LI Lin SHEN Liren* ZHU Qing WAN Tianmin

(Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China)

Abstract Accelerator database stores various static parameters and real-time data of accelerator. SSRF (Shanghai

Synchrotron Radiation Facility) adopts relational database to save the data. We developed a data retrieval system

based on XML Web Services for accessing the archive data. It includes a bottom layer interface and an interface ap-

plicable for accelerator physics. Client samples exemplifying how to consume the interface are given. The users can

browse, retrieve and plot data by the client samples. Also, we give a method to test its stability. The test result and

performance are described.

Key words XML, Web Service, Interface, Database, .NET, EPICS, AO

CLC numbers TL503.6, TP311.13

1 Introduction

Since the mid 90’s, Experimental Physics and

Industrial Control System (EPICS) [1] has been the

most popular tool-kit for accelerator control systems.

The control system of Shanghai Synchrotron Radiation

Facility (SSRF) [2] saves data in relational database via

EPICS Channel Access (CA) [1]. Relational database is

suitable for distributed network computing. However,

applying it to a system of accelerators involves an

enormous volume of data in various data types, limited

granularity of data acquisition, and diverse demand

types of top layer users, etc.

Web Service, as the distributed middleware tech-

nology based on Internet Web, is now widely used as

programming model, and multi-layered distributed

system is becoming the trend of database development.

A Web Services-based archive data analysis system

was designed for SSRF, with a distributed software

architecture of three logical tiers: data, business object

and user interface to make the platform independent,

scalable and flexible. In this paper, we describe the

Web Services interface for data access and exemplify

how to consume the interface to meet the demands of

different users for data retrieval and management.

2 Web Services overview

A Web Service provides a standard means of in-

teraction between different software applications, run-

ning on a variety of platforms. It is defined as a soft-

ware system designed to support the ma-

chine-to-machine interaction over a network by the

W3C (World Wide Web Consortium) Working Group.

It has an interface described in a machine-processable

format (specifically WSDL, Web Service Description

Language). Other systems interact with the Web Ser-

vice in a manner prescribed by its description using

SOAP (Simple Object Access Protocol) messages,

typically conveyed using HTTP with an XML (eXten-

sible Markup Language) serialization in conjunction

with other Web-related standards [3]. Web Services can

be used internally by a single application or exposed

externally over the Internet for use by any number of

applications. Because it is accessible through a stand-

ard interface, a Web Service allows homogeneous and

heterogeneous systems to work together as a single

web of computation, which also enables a new era of

distributed application development.

194 NUCLEAR SCIENCE AND TECHNIQUES Vol.18

3 System design

The database system is configured on Mi-

crosoft .NET Framework 2.0 and SQL Server 2005,

with infrastructure and tools to support XML and Web

Services. The system has a distributed architecture

with three layers of the data, the business object, and

the user interface, which improve the scalability and

the reuse performances. Maintenances of the system

and enhancements to the solution can be done with

ease. Fig.1 illustrates the architecture of the applica-

tions.

Fig.1 General architecture.

3.1 Data layer

The data layer is a database in SQL Server.

SSRF’s database stores all the static parameters and

real-time values on IOC (Input/Output Controller) by a

special archive engine via CA. The data are saved as

the XML format. In this way, it is easy to extend the

system, and just a modification of the XML Schema

files is needed when types and quantities of data vary.

Functionally, XML type can reduce the complexity of

data and give facilities for data analysis.

3.2 Business layer

The business layer is a middle layer where the

business logic of the solution is implemented. Mean-

while, the Web Services interface and database man-

agement is realized. The primary .NET technology

involved at this layer is the ADO.NET (ActiveX Data

Objects). The Web Services interface utilizes the

ADO.NET as the data access component and the result

is encapsulated as XML. Clients as .NET can call the

interface directly; however, other clients may generate

proxy classes according to WSDL files.

3.3 User interface layer

The user interface layer is the client that invokes

Web Services interface exposed from business layer.

This layer is responsible for interacting with the user.

The clients can be a traditional Windows form, a Web

forms page, the C/C++ applications under UNIX or

the physical software like Matlab or Labview. For each

client, we give an example to show how to consume

Web Services and analyze the results. One can choose

the client as he/she likes or even develop data analysis

tools of his/her own. The Windows form and Web

pages are based on .NET platform. Client of UNIX is

proposed and implemented by gSOAP [4,5].

4 System realization

4.1 Interface design

There are two main types of interfaces, i.e. bot-

tom layer interface and interface applicable for accel-

erator physics.

4.1.1 Bottom layer interface

Table 1 shows a few of the bottom layer interfac-

es.

Table 1 Bottom layer interface

Name Description Parameters Result type

GetChannelInfo.asmx Return information by channel name Channelname String

ReturnHttpVars.asmx Return parameters of server and clients Null String

RetrievalData.asmx Retrieve data by channel name and interval Channelname starttime endtime XML

UsrSqlQuery.asmx Execute SQL commands by users Usr pwd sqlstring XML

4.1.2 Interface for accelerator physics AO (Accelerator Object) is a part of an accelera-

No.4 LI Lin et al.: Web Services interface of SSRF archive data analysis system 195

tor control middle layer, the Matlab Middle Layer,

which is developed by Spear3 Laboratory together

with ALS Laboratory. The AO is a kind of Matlab

structure containing attributes for each Family (device

list, channel names, etc.), hardware-to-physics conver-

sion factors, range information, etc [6]. The AO resides

in a hidden memory location for application data asso-

ciated with the Matlab command window. Users of

accelerator physics get accustomed to the AO because

of its intuitive combination of physical elements. AO

has been used in a number of synchrotron facilities,

such as ALS, Spear3 and NSLS of USA; CLS of Can-

ada; PLS of Korea; Diamond of England; Soleil of

France; and ASP of Australia, plus a few more facili-

ties that are planning to use AO.

What makes the AO so appealing for us to build

an AO table is that the structure of the AO accords

with XML format naturally. The AO table includes

three columns: ID, Family Name and Data Structure in

XML format. Web Services interfaces similar to oper-

ations of the AO were designed and implemented.

They are: 1) the interface to return all information of

all families without parameters; 2) the interface to re-

turn values of a family by family name and interval; 3)

the interface to perform operation like AO. As an ex-

ample, ‘ao.QD.Monitor’ returns the data of monitoring

a dipole magnet. Therefore, physics users who are fa-

miliar with the AO can obtain data conveniently.

4.2 Client samples

Clients, through a Web browser or stand-alone

application, get access to the Web Services and send

out their request to the Web Services server. The server

validates the request and processes it, interacts with

the database and returns the results in XML format.

For data users of SSRF, an analysis and plotting tool

for historical data, called ‘HistoryPlot’, will be the

most widely used. We developed Windows form and

Web pages as a sample version of the HistoryPlot

thoroughly. Functions of the two applications are:

■ To retrieve data out of multi-conditions such as

channel names, interval, group family.

■ To list data results by sortable tables and print the

tables.

■ To transform the tables to Excel or PDF format.

■ To plot data like CGIExport and WinBrowser of

Channel Archiver [7].

■ To zoom the plot coordinates; save pictures in dif-

ferent types; print the plot; plot three-dimensional pic-

tures; change plot type into line, bar, or step style; and

save the plot data in XML format.

Fig.2 shows a typical screen of the applications.

Fig.2 Screen to run Windows form application.

5 Tests and results

At first, we found that the Web Services was dif-

ficult to test due to the fact that it involves distributed

applications with numerous runtime behaviors. Some

testing technologies such as design-by-contract were

proposed. We adopt SOAPtest 3.0 [8] to test the per-

196 NUCLEAR SCIENCE AND TECHNIQUES Vol.18

formance of the Web Services.

SOAPtest provides an entire suite of Web ser-
vice-focused testing tools, which enable us to use a
consistent tool to prove the Web Services from WSDL
validation to performance testing without building or
updating testing clients themselves. A key feature of
SOAPtest is that it provides a wide array of data
sources the tool supports, and it supports test data of
any ODBC/JDBC connectable database.

The test was realized on a computer of Pentium 4

processor in 2.4GHz and 512 Mb RAM, operating

under Windows XP Professional, with IIS 6.0 Web

server, ASP.NET 2.0.50727 and HTTP1.0. We tested a

Web Service named RetrievalData in the scenario

where 100 registers requested the Web Service in an

hour on the Intranet, and there were 6105878 records

in total in the SSRF database. According to the Bell

curve, the user number increased from 5 to 100 and

returned to 5 gradually. This is useful for expected

usage testing, which determines whether performance

problems occur with normal load patterns. We used a

data table shown in Table 2 as the test data source. The

result is shown in Table 3 and Fig.3.

Table 2 Data table as test data source

Parameters Execution time Records found Response size

cn= x, s=11/21/200613:49:20,e=11/21/2006 14:58:30 <1ms 1374 443kB

cn=x, s=11/21/200613:50:20,e=11/21/2006 14:05:00 <1ms 875 283.5kB

cn=x, s=11/21/200613:30:20,e=11/21/2006 13:50:20 <1ms 61 21.2kB

Table 3 Testing result of Web Services

Test name Avg. time /ms Std. deviation /ms Run count Failure count Avg. request size /byte Avg. response size /byte

RetrievalData 6721 10166 15894 1105 684 40877

Fig.3 Testing result of Web Services.

As can be seen, the average time to retrieve and

transmit data of 39.92 kilobytes from database to 100

users is 6721 ms. This proves that SOAP transmission

is feasible under massive data conditions and, more

important, the performance is efficient.

On the Windows client side, we tested the re-

sponse time of HistoryPlot. The time was the sum of

the followings: the time of clients sending their queries,

the time consuming in response and querying data in

the database on the server side, and the time of send-

ing the results back and binding to the GUI. Histroy-

Plot was installed on a computer of Intel Xeon MP in

3.66GHz and 8GB RAM, operating under Windows

Server 2003R2. The Web Service is called over a local

area network. Fig.4 shows a testing result.

Actually, there will be almost 60,000 channels in

SSRF and the total quantity of real-time data records

amount to several millions. From Fig.4, the time to

No.4 LI Lin et al.: Web Services interface of SSRF archive data analysis system 197

retrieve 1400 records from 5.3 million records and

response to the HistroyPlot is 1.3 s. The performance

of clients is sufficient to meet the needs of users.

Fig.4 Windows client response time.

6 Conclusion

The archive data analysis system of SSRF was

designed and implemented to provide the interface to

gain and analyze archive data for users, including bot-

tom layer interface and interface applicable for accel-

erator physics. A specific client application named

HistoryPlot was programmed to browse, retrieve and

plot data.

XML and Web Services technology provide a

standard means of interoperating between different

software, running on a variety of platforms, using

XML as an open standard for data exchange via com-

mon Internet protocols. Applying Web Services to de-

sign the middleware interface of data access was mo-

tivated by the fact that SSRF database has an enor-

mous volume of data in various data types, limited

granularity of data acquisition, and diverse demand

types of top layer users. We established a distributed

application architecture of Web Services from server

to clients, realized the Web Services interface for data

acquisition, and gave examples of how to consume the

interface. Performance of the system from the server

to the client has been satisfactory.

References

1 Dalesio B. EPICS Overview, http://www.aps.anl.gov/epics/

docs/training.php.

2 SSRF Introduction. http://ssrf.sinap.ac.cn/english/1/ Intro-

duction.htm.

3 W3C. org. Web Services Architecture. http://www.w3.org/

TR/ws-arch/.

4 gSOAP Toolkit. http://sourceforge.net/projects/gsoap2/.

5 http://www.cs.fsu.edu/~engelen/soap.htm.

6 Portmann G, Corbett J, Terebilo A. Middle layer software

manual for accelerator physics. LBNL Internal Report,

LSAP-302, 2005.

7 Graber T. Channel Archiver, http://www.aps.anl.gov/xfd/

bcda/epicsgettingstarted/starttools/The_EPICS_Channel_

Archiver.ppt.

8 SOAPTest.

http://www.parasoft.com/jsp/products/release.jsp? arti-

cleId=1563&product=SOAP.

