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Abstract A precise knowledge of geometry is always

pivotal to a 3-D X-ray imaging system, such as computed

tomography (CT), digital X-ray tomosynthesis, and com-

puted laminography. To get an accurate and reliable

reconstruction image, exact knowledge of geometry is

indispensable. Nowadays, geometric calibration has

become a necessary step after completing CT system

installation. Various geometric calibration methods have

been reported with the fast development of 3-D X-ray

imaging techniques. In these methods, different measuring

methods, calibration phantoms or markers, and calculation

algorithms were involved with their respective advantages

and disadvantages. This paper reviews the history and

current state of geometric calibration methods for different

3-D X-ray imaging systems. Various calibration algorithms

are presented and summarized, followed by our discussion

and outlook.

Keywords 3-D X-ray imaging system � Computed

tomography � Geometric calibration � Reconstruction

1 Introduction

The importance of geometric calibration cannot be under-

estimated. In a typical 3-D X-ray imaging system, computed

tomography (CT), for example, the X-ray tube, assumes dif-

ferent discrete positions along a trajectory. For each source

position, a projection image (a radiograph) is acquired [1].

Reconstruction of the imaged object is accomplished by the

imaging system. In the last few decades, a large number of

reconstruction algorithms have been published devote to

improving the image quality, which includes some famous

algorithms like FDK, Grangeat’s algorithm, Katsevich’s

algorithm, and back-projection filtration (BPF) algorithm.

However, the image quality promotions are limited by the lack

of a precise knowledge of the system geometry. 3-D X-ray

system geometry refers to the relative positions of the X-ray

focal spots and the location of the digital detector. A precise

calibration of the system geometry can overcome problems,

such as the blurring effect and artifacts, and becomes the most

important factor for a better reconstructed image.

The development of geometric calibration was a sub-

stantial improvement to computer imaging. We can easily

obtain a high image quality and a high level of detail reso-

lution of a reconstructed structure in the imaged object with

calibrated system geometry. Various calibration methods

have been employed in medical or industrial imaging, which

have already achieved good results in practical applications.

This paper will summarize the current state of geometry

calibration in different 3-D X-ray imaging systems. Also, a

brief history of geometric calibration will be given, followed

by a description of various methods. As these methods are

suitable for different 3-D X-ray imaging systems, we will

introduce them with a classification according to the systems

where they are employed.
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2 Background

In order to get a relatively accurate system geometry,

various calibration methods have been reported. Due to

some technical limitations, most of them were carried out

within the past two decades.

Early methods determined the system geometry by

physically measuring the spatial location of the different

components. Although these methods can get a relatively

accurate geometry, they require a number of precise

measurements and are typically complex. After early

methods, researchers proposed a series of mathematical

methods which employ some point-like markers and

calibrate the system geometry with the markers’ trajec-

tory on the detector plane. These methods can calibrate

the system geometry with just several simple materials.

However, they cannot calibrate the entire geometrical

parameters and they are only suitable to some general

scanning trajectory, such as cone beam CT or spiral CT.

Besides, some calibration methods were also developed

for the imaging system, which has a specific scanning

trajectory, such as tomosynthesis, computed laminogra-

phy, and limited-angle CT [2–4]. While these systems

may not have a conventional scanning mode, some

markers and their locations in the projected image were

used to determine the relative positions between the

components of the system. Last but not least, methods

with a well-designed phantom also existed. Although

these methods can acquire an accurate geometry, the

phantoms used were always very expensive and were not

convenient for practical applications. Nowadays, more

and more practical methods have been introduced for

geometric calibration. These methods may determine the

system geometry with only some simple point-like

markers located at any position within the imaged space

and can obtain relatively accurate system geometry when

dealing with practical applications.

In conclusion, we cannot get a reconstructed image of a

high quality without an exact knowledge of the system

geometry. These existing methods have achieved great

success; however, geometry calibration leaves us much

room for future improvement.

3 Geometric calibration for different 3-D X-ray
imaging systems

The existing methods are suitable for different

3-D X-ray imaging systems, which have a specific

scanning trajectory. We will describe the typical

methods according to the system where they are

employed.

3.1 Calibration for CT

Computed tomography was first introduced in 1971.

Since then, it has been widely used in clinical appli-

cations. With the development of flat plane detector and

computer hardware, it is possible to get a high resolu-

tion reconstructed image. In a typical CT system, the

image resolution depends on many factors, such as the

resolution of the detector, the focal spot size of the

X-ray source, the reconstruction method, and the

accuracy of the system geometry. In a practical system,

the geometry parameters are always inaccurate. This

inaccuracy severely impacts the quality of the recon-

structed image and makes geometric calibration very

necessary [5].

In a typical CT system, such as circular orbit CT or

spiral CT, some common parameters should be taken into

account [6–8], as shown in Fig. 1:

D: The distance between the X-ray source and the

detector

R: The distance between the X-ray source and the

rotation center

u0: The horizontal coordinate of the detector center

v0: The vertical coordinate of the detector center

u: The oblique angle of the detector in the horizontal

direction

r: The pitch angle of the detector

g: The oblique angle of the detector in the detector plane

Db: The angle sampling interval

In order to calculate all the parameters above, some

methods, which use well-designed phantoms, were pro-

posed [9–11]. For example, in Cho’s method, a specially

designed phantom which consists of 24 steel ball bear-

ings in a known structure is used. Twelve ball bearings

are spaced evenly at 30� in two plane-parallel circles

separated by a given distance along the tube axis. Using

the ellipse trajectory of the ball bearings in the detector,

he can calibrate all the geometric parameters of a CT

system. Although this method can calculate all the

parameters, it needs a specially designed phantom, which

may be very expensive. Besides, the design deviation

will influence the accuracy of the calibration, which

makes the method hard to be employed in practical

applications.

Most mathematical methods do not calculate all the

parameters. They use some point-like markers or feature

points without specific arrangement in the space. The only

prior knowledge may be the distance between each two

markers. We will introduce Yang’s method as an example

in the following section [12].

Yang’s method is based on a number of feature points

and can estimate the following five system parameters,
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D, R, u0, v0, and g. For a cone beam CT system, if we

assume that only the object rotates and the X-ray tube

and detector remain stationary, the orbit of a point in the

object during the scan is a circle in a plane parallel to x–

y plane. The projection of this circle on the detector

plane will be an ellipse. Individual points on this ellipse

correspond to the marker’s angular positions on the cir-

cle. Yang referred to two points on the circular orbit that

are exactly 180� out of phase as a radial pair, as shown

in Fig. 2a. Thus, the distance, q, between a radial pair of

points on the detector plane can be calculated. It can be

proved that q will have the maximum and minimum

values when the feature point is on the x axis or y axis

for a cone beam CT system with a fan angle less than

60� and a cone angle less than 30�, as shown in Fig. 2b.

We can define these feature points as Aik (uik, vik), here

i refers to the index number of each individual marker,

and j is the index number for the four benchmark points

on each marker orbit.

Thus, we can calculate the five parameters. For each

individual marker, defined

Xi ¼
vi1 � vi2

Ai3Ai4j j Yi ¼
vi1 þ vi2

2
: ð1Þ

A linear function X = a ? bY can fit all(Yi, Xi), and we

can determine D and v0,

D ¼ b v0 ¼ a: ð2Þ

To calculate g and u0, when we define the intersection of

Ai1Ai2 and Ai3Ai4 as (ui0, vi0), we have
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ð3Þ

We found that all (ui0, vi0) can fit the linear function

u0 = a ? bv0. After we calculate a and b, we have

g ¼ tan�1 b: ð4Þ

To calculate R, we need the distance l between two

markers. Define r1 and r2 the two radii of each marker’s

orbit, as shown in Fig. 3.

We have

l2 ¼ h2 þ r2
1 þ r2

2 � 2r1r2 cos a: ð5Þ

Here

h ¼ A10A20j j
d

R; r1 ¼ A13A14j j
2d

R; r2 ¼ A23A24j j
2d

R: ð6Þ

If we define the original angular position of the two

markers as a10 and a20, then

a1 ¼ a10 � a14 a2 ¼ a20 � a24 a ¼ a1 � a2: ð7Þ

Then, we can calculate R

DET

0 0,u v
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n

y

x

v

u

(a) (b) 

u

vz

z v

u

R

D
S

Fig. 1 Geometry parameters of a typical 3-D X-ray imaging system. a Definition of the parameters D, R, (u0, v0). b Definition of the parameters

g, r, u
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R ¼ l � d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A10A20j j2þ A13A14j j
2

� �2

þ A23A24j j
2

� �2

� A13A14j j� A23A24j j�cos a
2

r :

ð8Þ

Then, we have all the five parameters with Yang’s

method. There are many similar methods, which also cal-

culate part of the system parameters. For example, Noo

proposed his analytical method in 2000 and von Smekal

proposed a method based on Fourier transform in 2004 [13,

14]. Beque calibrated the geometry using an object with

three spheres [15]. The common point of these methods is

that they use more than one projection to determine the

geometric parameters for each source position. Other

methods calculate parameters for each projection sepa-

rately and independently of all other projections [16–19].

Besides, there are also methods which calibrate the system

geometry by estimating a general projection matrix [20].

Due to the space limitations, we will not discuss these

methods in detail in this paper.

In conclusion, all these methods are designed for a

typical CT system with a circle-plus-arc trajectory and may

not be suitable for other imaging systems. Each of them has

their own limitations and advantages. Some can give an

accurate system geometry and calculate all the geometric

parameters with well-designed phantoms. However, the

phantoms may be very complicated, precise, and expen-

sive, which make these methods only applicable to

experimental research. Other methods are more suitable for

practical applications due to their low requirement to the

Fig. 2 Calibration geometry of

Yang’s method. a Projection

orbit and radial pair. b Four

benchmark points on each

marker orbit [12]

Fig. 3 Distance between two markers in Yang’s method
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calibration phantoms. However, they can only calculate

parts of the system parameters. All these methods can help

us to improve the quality of the reconstructed image, and

we can choose an appropriate method according to the

needs of different applications.

3.2 Calibration for digital X-ray tomosynthesis

Tomosynthesis was first introduced at almost the same

time as CT. Due to some technical limitations, it was not

widely used until the appearance of flat panel detector [21].

Nowadays, digital X-ray tomosynthesis has become more

and more popular in practical applications, especially in

clinical applications, such as breast tomosynthesis and

dental tomosynthesis [22]. There are three typical scanning

modes in a tomosynthesis system, as shown in Fig. 4 [23].

A completely isocentric motion is shown in Fig. 4a. Both

the X-ray source and detector rotate around a common axis

within the object. Figure 4b is the most classic tomosyn-

thesis scanning method, a partial isocentric motion. The

detector moves in a line or a circle within one plane. And

the X-ray source rotates around a certain rotation center. In

some applications, the detector has to be stationary due to

the limited space, as shown in Fig. 4c. Both the object and

detector stay still while the X-ray source moves along a

trajectory around them, for example, the breast tomosyn-

thesis system.

In a typical tomosynthesis system, the imaged object is

fixed in a certain position and the X-ray source assumes

different discrete positions along a trajectory in space. For

each source position, a projection radiography image is

acquired and then sent to the tomosynthesis system.

Accurate image reconstruction also requires a precise

knowledge of the system geometry. There have been many

methods that calibrate the 3-D X-ray tomosynthesis system

geometry. However, the tomosynthesis system includes a

different geometry for each acquired image, typically

because of the change in the X-ray source location for each

acquired image. This means that methods may not acquire

a satisfying result [24–26].

Many tomosynthesis geometric calibration methods are

based on some well-designed phantoms. For example,

Wang and Godfrey proposed similar methods, which

employ some point-like markers to estimate possible

deviation in tomosynthesis geometry and reduce these

deviations to get a better reconstructed image [27, 28]. Hui

et al. proposed a method using a phantom with ten fiducial

markers. With this phantom, the projection matrices of an

experimental digital tomosynthesis prototype are acquired

from each projection view under a series of misalignment

conditions [29]. Although these methods can acquire a

relatively accurate system geometry, the phantom used is

relatively complex and is not convenient for clinical

applications. In 2005, GE (General Electric Company)

proposed a method using some fiducial markers with non-

determined positions. In GE’s method, the geometry is

determined by arbitrarily locating at least two markers

within the imaged volume and locating the projections of

the markers within at least two images corresponding to

different positions of a focal spot of the X-ray source. For

every X-ray source position, one image acquired must be

included in at least two images, as shown in Fig. 5 [30].

P and Q denote two different focal spot positions of the

X-ray source, and A and A0 denote two different fiducial

marker positions. B and B0 and C and C0 denote the

respective locations of the projections of the markers A and

A0, generated by acquiring a projection image with P and

Q. Then, the method calibrates the geometry by first

selecting an arbitrary focal spot position, P, and selecting

the first marker position, A, as an arbitrary point between

(a) (b) (c)

Fig. 4 Three typical digital tomosynthesis scanning mode
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P and the corresponding projection, C, located on the line

through P and C. Then, the method determines the addi-

tional marker, A0, as the intersection of the line through

A and O with a line through the focal spot, P, and the

corresponding projection, C of A0. Then, we can determine

the remaining focal spot position, Q, as the intersection of

the family of lines. This method can calibrate tomosyn-

thesis geometry using only some fiducial markers with a

non-determined position, which is very suitable for prac-

tical applications. However, the stability of the method

needs to be tested in more experiments.

Generally speaking, these calibration methods for a

tomosynthesis system are more tailored, typically because

the system has some specific characteristics. The limita-

tions and advantages of each method are similar to those

for a CT system. As the development of existing calibra-

tion methods is not very consummate, geometry calibration

in tomosynthesis leaves us much room for future

improvement.

3.3 Calibration for computed laminography (CL)

Laminography techniques are widely used to produce

cross-sectional images of selected planes within objects. In

some cases, it provides a viable alternative to CT. There

are always three scanning types for the CL system: linear,

planar, and rotational. Only the rotary bearing movement

has a simple geometrical structure, and the space require-

ment is not as high as the other modes. Furthermore, the

beam angle does not need to be as wide as the conventional

laminography [31, 32]. We will discuss the rotational

scanning mode in the following section as shown in Fig. 6.

The scanning geometry consists of three parts, an X-ray

source, a two-dimensional digital flat plane detector, and a

rotation gantry. For a practical CL scanning system, the

projection of the X-ray focuses on the imaging plane,

namely point O, which is not known and cannot be mea-

sured by direct means. However, the CL reconstruction

algorithm needs the position of the projection of the X-ray

focus, so the calibration of the projection coordinate system

is the essential step. Barry Eppler introduced a method

based on the empirical data gathered during physical cal-

ibration and data analytically derived from the empirical

data. Other methods may also use some point-like markers

to calibrate the system geometry [33]. In 2012, Yang

proposed a method using several spherical objects at two

geometrical magnification ratio positions in the cone X-ray

beam to calibrate the system geometry. We will give a brief

introduction of this method in the following section [34].

As shown in Fig. 7, we need to determine the projection

of the X-ray focus (point O).

The projection of the point p1(x1, y1, z1) in the cone

beam is point p01. When the point p1 moves to p2(x1, y1,

z1 ? Dz) with the projection of p02 on the imaging plane

along the z-axis by a step of Dz, the equation of the lines

FP1 and FP2 are:

FP1 :
x

x1

¼ y

y1

¼ z� D

z1 � D

FP2 :
x

x1

¼ y

y1

¼ z� D

z1 þ Dz� D
:

ð9Þ

P

Q

B
B

C C

A
A

O

Det plane

Fig. 5 Principle diagram of GE’s calibration method Fig. 6 Principle diagram of cone beam CL scanning
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Then, we can derive the coordinates of p01 and p02:

p01 ! �Dx1

z1 � D
;
�Dy1

z1 � D

� �

p02 ! �Dx1

z1 þ Dz� D
;

�Dy1

z1 þ Dz� D

� �

:

ð10Þ

Then, the equation of line p01p
0
2 is

p01p
0
2 : y ¼ y1

x1

x: ð11Þ

Obviously, line p01p
0
2 passes through O. Thus, for any

point in the cone beam, after moving a distance along the

central X-ray, the line connecting its new projection point

with its original projection point always passes through the

projection point of the X-ray focus. So we can set any two

points at position p1 in the cone beam and get their pro-

jections, then move them to position p2 along the central

X-ray and get their new projections. The intersection point

of the two lines, which connects the projections of the same

point, is the projection of the X-ray focus. Then, we have

the calibrated geometry.

As we can see, the geometric calibration for the CL

system is different from that of other systems, such as CT

and tomosynthesis. However, the essence of the calibration

is the same. Thus, we can also learn from these calibration

methods and this may help us better design calibration

methods for other systems.

3.4 Other calibration methods

All the calibration methods discussed above are suit-

able to some specific imaging modalities. There are some

other methods fit for some special imaging modalities, such

as linear CT, saddle line CT, and tuned-aperture CT

(TACT). As these imaging systems are not widely used in

practical applications, calibration methods for these sys-

tems are not as well developed as those discussed above.

Due to the relatively special scanning trajectory, cali-

bration methods for those systems always employ several

simple markers and determine the system geometry with

their locations and projection locations [35]. In 1997, a

machine named TACT was introduced for clinical dental

diagnosis. TACT is a quais-3-D X-ray imaging technique

that may reconstruct the image slices of the region of

interest at any depth based on a series of intra-oral radio-

graphs taken from different directions [36]. The principle

of TACT is similar to tomosynthesis, and its scanning

trajectory is always arbitrary. In order to get an accurate

positional relationship between the source and detector, we

put some steel or ceramic beads behind the irradiated teeth

and took several photos in any source location. Then, we

calibrated the geometry with the projection locations of the

spheres. However, it is very inconvenient to put markers

into a patient’s mouth and this makes TACT not used

clinically nowadays [37–42].

Although these imaging systems are not widely used in

practical applications, the calibration methods for them are

worth considering, and we can get valuable reference from

them when studying a new calibration method.

4 Numerical simulations

In order to explain the effect of geometric calibration,

we chose some typical methods, and some numerical

simulations were carried out. The results are shown as

follows.

Firstly, we did some simulation with Yang’s method in a

CT system. The geometry of the system is shown in Fig. 8.

We set the phantom between the source and detector.

The size of the sensor is 128 9 128 mm2 with 512 9 512

pixels. The distance, D, between source and detector is

300 mm. The distance between the R source and the

coordinate origin is 180 mm. The source, coordinate ori-

gin, and the center of the detector plane are located in a

straight line. Then, we add some random errors to both

D and R. Also we give the detector a micro-offset. After

Imaging plane

( )0,0,DF

( )1 1 1 1, ,P x y z

( )2 1 1 1, ,P x y z z+ Δ

1P′ 2P′

X-ray focus

x

y

z

o

Fig. 7 Principle diagram of calibration method
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that, we get 360 projections from 0 to 360�. And the images

are reconstructed using the FDK algorithm with three kinds

of system geometry. They are the accurate geometry, the

calibrated geometry, and the geometry with random errors.

The center slices of different results are shown in Fig. 9.

As shown in Fig. 9, Fig. 9a is the reconstructed image

with accurate system geometry, while Fig. 9c is the one

that is reconstructed with calibrated geometry. Compared

to Fig. 9b, which is reconstructed without geometric cali-

bration, we find that Fig. 9c has a higher contrast in details

and can be the one that reconstructed the image with

accurate geometry. This explains the effects of the geo-

metric calibration methods.

Also, we carried out a simulation using a tomosynthesis

system with GE’s method. The simulation geometry is

shown in Fig. 10.

We set the distance of the X-ray focal spot to the center

of the sensor at 300 mm. The origin of the coordinate was

located at the center of the sensor. The detector remained

stationary during IDT scanning. The size of the sensor was

x

y

z

dy

dx

dz

Source

Object plane

Object

Detector
plane

Rotate
angle

Fig. 8 Geometry of the CT

system

Fig. 9 Center slice of different reconstructed results
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20 9 20 mm2 with 1000 9 1000 pixels. The phantom we

used was consisted of 27 balls distributed in three layers.

The size of the phantom was 10 9 10 9 10 mm3 with

512 9 512 9 512 pixels, as shown in Fig. 10b. The X-ray

source moved with angular ranges of ±30� and an angular

interval of 3�. The images were reconstructed on

512 9 512 9 512 grids. The distance between the trajec-

tory and the detector plane is 300 mm. Then, we added

some random errors to the 3-D coordinates of each source

position. Using these new source positions, we got 21

projections. After that, we reconstructed the image with

three kinds of system geometry. The center slices of the

different results are shown in Fig. 11.

As shown in Fig. 11, Fig. 11a is the reconstructed image

without geometric calibration, Fig. 11b is reconstructed

with calibrated geometry, and Fig. 11c is the one that was

reconstructed with accurate geometry. As the offsets of our

original source positions are limited, the differences

between the reconstructed images are not so significant.

However, we also found that the reconstructed slice with a

calibrated geometry is better than that without geometric

calibration.

In a conclusion, we can see from the above simulations

that geometric calibration can help us get better recon-

structed images. We can easily obtain a high image quality

and a high level of detail resolution of the reconstructed

structure of the imaged object with calibrated system

geometry.

5 Discussion and conclusion

A precise knowledge of geometry is always pivotal to a

3-D X-ray imaging system. We can easily obtain a high

image quality and a high level of detail resolution of the

reconstructed structure in the imaged object with an

trajectory

X-ray source

Object

Digital x-ray sencor
Y-axis

Z-axis

30
0m

m

(a) (b)

Fig. 10 Simulation using

tomosynthesis system

Fig. 11 Center slice of different reconstructed results
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accurate system geometry. Various calibration methods

have been proposed in order to get a relatively reliable

geometry. Most of them use some markers and calculate

the system geometry with a mathematical method, such as

the analytical method, transform domain method, or iter-

ative approach. These methods are easy to operate when

dealing with practical applications. However, they are only

suitable for some specific imaging modalities and can only

calibrate part of the geometric parameters. Other methods

may get a better calibrated geometry, as they use a custom

phantom designed according to the imaging system.

However, these phantoms are always very complex and

expensive. Besides, phantoms need a special design and the

design deviation will influence the accuracy of the cali-

bration. All these limitations make them hard to be

employed in practical applications. Furthermore, calibra-

tion methods, which can be applied to any kind of imaging

modalities, also exist, but the accuracy and stability remain

a problem to be solved.

Although these existing methods have acquired great

achievements, there is much room for improvement in

geometric calibration. Future work may focus on methods

which can apply to different imaging modalities with fewer

markers. Furthermore, we may use some iterative methods

to optimize the system geometry when doing image

reconstruction; thus, we can eliminate the calibration step.
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