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Abstract Mass attenuation coefficients, effective atomic

numbers, and electron densities for semiconductor and

scintillation detectors have been calculated in the photon

energy range 1 keV–100 GeV. These interaction parame-

ters have been found to vary with detector composition and

the photon energy. The variation in the parameters with

energy is shown graphically for all the partial photon

interaction processes. The effective atomic numbers of the

detector were compared with the ZXCOM program, and

the results were found to be comparable. Efficiencies of

semiconductor and scintillation detectors are presented in

terms of effective atomic numbers. The study should be

useful for comparing the detector performance in terms of

gamma spectroscopy, radiation sensitivity, radiation mea-

surement, and radiation damage. The results of the present

investigation should stimulate research work for gamma

spectroscopy and radiation measuring materials.

Keywords Semiconductor � Scintillation � Attenuation
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1 Introduction

Radiation interaction with elements, compounds, and

composite materials has become a thrust area of research

and development to investigate material properties and

their various applications. The process of radiation

interaction is being used for various applications in nuclear

physics, radiation physics, radiation detection, radiobiol-

ogy, medicine, agriculture, and industry. The mass atten-

uation coefficients, effective atomic numbers, and effective

electron densities are basic quantities required to study the

photon interactions. The interaction depends on incident

photon energy and elements of the absorbing material (i.e.,

atomic number). In a compound or composite material

(e.g., concrete, polymer, alloy, biological material), the

atomic number is represented by an effective atomic

number analogous to the atomic number of a single ele-

ment. The effective atomic number varies with photon

energy, whereas the atomic number of an element is con-

stant for all photon energies.

Semiconductors and scintillation detectors are widely

used for X- and gamma-ray measurements. These detectors

are utilized in different fields of science and technology,

mainly for identification of gamma-ray emitters and

sometimes only for radiation detection. The sensitivity for

gamma-ray detection is essential for the identification of

radiation and different isotopes. Scintillation detectors have

a much greater efficiency for interactions with gamma-rays

compared to gas- and liquid-filled detectors. Semiconduc-

tor-based detectors have shown better energy resolution

and good stability over time, temperature, and operating

parameters. The instruments consist of scintillation and

semiconductor detectors to provide the measure of the

energy of a radiation interaction and the type of radionu-

clide. The scintillation and semiconductor-based detectors

are being used in nuclear physics laboratories, research

reactors, nuclear power plants, and accelerators. These

detectors are being utilized in laboratories and industries

for gamma-ray detection in online and off-line
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measurements based on the requirements and characteristic

suitability.

The mechanisms for measurement of the energy of the

photon and the type of radionuclide require detailed

information about the interaction with an element or a

compound. The interaction probability (scattered/absorbed)

per unit length of a photon with an atom is described by the

mass attenuation coefficient (fundamental interaction

parameter). The mass attenuation coefficient is utilized for

the calculation of the effective atomic number and the

effective electron density of a compound or composite

material. Therefore, knowledge of the mass attenuation

coefficient, effective atomic number, and effective electron

density is essential in comparing the detector efficiency and

resolution.

Studies on effective atomic numbers and electron den-

sities have been reported by several investigators for

chemical compounds [1, 2], low-Z materials [3, 4], alloys

and steels [5–8], glass and minerals [9–12], biological

materials [13], detectors [14, 15], tissue substitutes [16–

18], and composites [19].

There are some studies which calculate the effective

atomic numbers of semiconductors [20–22] in the liter-

ature. The radiation damage to some widely used semi-

conductor materials has been simulated using FLUKA

[23]. This has encouraged us to calculate the effective

atomic numbers and electron densities, which should be

directly applicable to gamma spectroscopy, radiation

sensitivity, radiation measurement, and radiation

damage.

2 Computational method and theoretical
background

The mass attenuation coefficients of a compound or

composite material are determined by the transmission

method using Lambert–Beer’s law (I ¼ I0e
�lmt), where I0

and I are the incident and attenuated photon intensity

with energy E, respectively, lm = l/q (cm2 g-1) is the

mass attenuation coefficient, and t(g/cm2) is the mass

thickness of the medium (the mass per unit area). The

total lm value for materials composed of multi elements

is the sum of the (lm)i values of each constituent

element obtained by the following mixture rule

(lm ¼
Pn

i wiðl=qÞi), where wi is the proportion by

weight and ðl=qÞi is mass attenuation coefficient of the

ith element using the WinXcom program [24], which was

updated for XCOM programs [25]. The quantity wi is

given by wi ¼ niAi=
Pn

j njAj with the condition
Pn

i wi ¼ 1, where Ai is the atomic weight of the ith

element and ni is the number of formula units.

The total atomic cross sections (rt) for a compound or

composite material can be obtained from the lm values

using the following relation [26];

rt ¼
lmM
NA

; ð1Þ

where M ¼
Pn

i niAi is the molecular weight of a com-

pound or composite material and NA is Avogadro’s num-

ber. The effective atomic cross section (ra) can be

calculated by the following equation:

ra ¼
1

NA

X
fiAi

l
q

� �

i

: ð2Þ

Total electronic cross section (re) for a compound or

composite material is calculated using the following

equation [12]:

re ¼
1

NA

X fiAi

Zi

l
q

� �

i

¼ ra
Zeff

; ð3Þ

where fi ¼ niP
i
ni
denotes the fractional abundance of the

element i with respect to the number of atoms, such that
Pn

i fi ¼ 1 and Zi is the atomic number of the ith element.

ra and re are related to the effective atomic number (Zeff)

of a compound or composite material through the follow-

ing relation [12];

Zeff ¼
ra
re

: ð4Þ

The effective electron density, Nel (number of electrons

per unit mass) of a compound or composite material is

derived from following relation:

Nel ¼
l
q

� �

re
¼ Zeff

M

� �

NA

X

i

ni ð5Þ

Recently, a program, direct-Zeff, has been developed for

the calculation of mass attenuation coefficients, effective

atomic numbers, and effective electron densities for a

compound or composite material for photon energies of

1 keV to 100 GeV [27]. In the present investigation, the

direct-Zeff program was used to calculate mass attenuation

coefficients, effective atomic numbers, and effective elec-

tron densities of semiconductor and scintillation detectors.

3 Results and discussion

The most popular semiconductor and scintillation

detectors were chosen in the present investigation. By

using their chemical compositions, the mass attenuation

coefficients (l/q), effective atomic numbers (Zeff), and

effective electron densities (Nel) were calculated in the

photon energy range of 1 keV to 100 GeV. In the follow-

ing subsections, energy and chemical composition
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dependencies of the l/q, Zeff, and Nel for total and partial

interaction are discussed.

3.1 Total (with coherent) photon interaction

The total mass attenuation coefficients, l/q, of the

semiconductor and scintillation detectors in the photon

energy range of 1 keV to 100 GeV are shown in Fig. 1.

The variations in the l/q are due to the chemical compo-

sition and energy dependency. In the low-energy region, l/
q have the highest values, where the photoelectric effect is

dominant and the interaction cross section is proportional

to Z4-5/E3.5. In the intermediate energy region, the inco-

herent scattering is the dominant interaction process. There
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is a linear Z-dependence of incoherent scattering, and the

l/q are found to be constant. In the high-energy region, l/q
increase, where the pair production is dominant and the

interaction cross section is proportional to Z2.

For the total photon interaction process, the variations in

Zeff and Nel with photon energies are shown in Figs. 2 and

3, respectively. From Fig. 2, it is clear Zeff increases with

energy initially and then decreases up to 2 MeV (approx.),

however some cases there is insignificant change and some

cases multiple peaks are observed. Above 100 MeV, Zeff
remains almost constant for all the detectors. This is due to

the dominance of pair production in the high-energy

region. In Fig. 3, the variations in Nel with photon energy

for the total interaction processes are similar to that of Zeff
and can be explained similarly.

From Fig. 2, it is observed that the variation in Zeff
depends upon the chemical compositions of the detectors.

The PbI2 detectors contain a larger Z (Pb) value than any of

Fig. 3 Effective electron

densities (total) of

semiconductor and scintillation

detectors
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the other detectors due to which the largest Zeff to be

observed. The LSO and LuAP detectors show a sharp jump

in Zeff with energy due to the composition of the low- and

high-Z elements.

The variation in Zeff for total interaction reflects the

importance of the partial photon interaction processes. The

dominating photon interaction process is the photoelectric

absorption at low energies, incoherent (Compton) scatter-

ing at intermediate energies, and pair production at high

energies. Coherent (Rayleigh) scattering does not play any

significant role, since it occurs mainly at low energies,

where the photoelectric effect is the most important inter-

action process.

At a low-energy range (E\ 0.01 MeV), the maximum

Zeff is found where the Z4-5 dependence of the interaction

cross section for the photoelectric effect contributes to the

highest-Z of the detector. At the intermediate energy range

(0.05 MeV\E\ 5 MeV), Compton scattering is the
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main photon interaction process. At high energies (typi-

cally E[ 100 MeV), Zeff becomes constant again, but

smaller than in the low-energy range. This is due to the

dominance of pair production. Hence, pair production

provides less of a contribution to the higher-Z elements

than the photoelectric effect. It is to be noted that the

effective atomic numbers of the detectors are found to be

constant in the pair production region (E[ 100 MeV).

The largest Zeff value among the selected semiconductor

and scintillation detectors was observed for PbI2, followed

by HgI2. The values of Zeff show that the interaction

probability of the photon with the detectors is the largest,

whereas it is the lowest for YAG. The largest interaction

probability of the photon with the PbI2 provides the highest

efficiency of the detector. Therefore, the efficiency of

semiconductor and scintillation detectors are presented in
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terms of effective atomic numbers. However, the PbI2 is

not a suitable detector because the electron–hole pair cre-

ation requires an energy value of 7.68 eV, which is very

large compared to 2.96 eV for the Ge detector [28]. During

the selection of a suitable detector, photon interaction

characteristics should be compared for each parameter in

order to get the desired results.

3.2 Photoelectric absorption

For the photoelectric absorption process, the variations

in Zeff and Nel with photon energy are shown in Figs. 4 and

5, respectively. Figure 4 shows the most significant varia-

tions in Zeff are due to the chemical compositions of the

detectors. Below 10 keV, the variations in Zeff are more
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pronounced in the detectors containing high-Z elements,

and there is no variation in the CdTe, GaAs, and GaSe

detectors, except for a few energies. The sensitivity of

these detectors is low; however, the behaviors of Zeff for all

detectors are similar after 100 MeV. The variation in Nel

for photoelectric absorption shown in Fig. 5 can be

explained similarly to Fig. 4.

3.3 Incoherent (Compton) scattering

For incoherent scattering, the variations in Zeff and Nel

with photon energy are shown in Figs. 6 and 7, respec-

tively. From Fig. 6, it is found that Zeff increases sharply

with an increase in the energy region 1–500 keV. Beyond

1 MeV, Zeff is independent of photon energy for all the
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detectors. The variation in Zeff depends on the respective

proportion of the atomic number of the elements in the

detectors. The variation in Nel for Compton (coherent)

scattering in Fig. 7 can be explained using the partial

photon interaction process similar to the Fig. 6.

3.4 Coherent (Rayleigh) scattering

For the coherent scattering, the variations in Zeff and Nel

with photon energy are shown in Figs. 8 and 9, respectively.

From Fig. 8, it is found that Zeff is constant except for the
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detectors that increase in energy from 1 keV to 1 MeV.

Beyond 1 MeV, Zeff is independent of photon energy for all

the detectors. The variation in Nel for Compton (coherent)

scattering in Fig. 9 can be explained similarly to Fig. 8.

Figure 10 shows the variation in the coherent-to-inco-

herent scattering ratio (Coh./Incoh.) for the Zeff of all the

detectors and is constant for photon energies beyond

1 MeV.

3.5 Pair production (nuclear field)

For pair production in the nuclear field, the variations in

Zeff and Nel with photon energy are shown in Figs. 11 and

12, respectively. From Fig. 11, it is found that Zeff slightly

decreases (for few detectors) with an increase in photon

energy ranging from 1 to 20 MeV, and then, it is almost

independent of photon energy for all other detectors. The
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Table 1 Comparison of effective atomic numbers by Direct-Zeff and ZXCOM

Energy (MeV) Methods CdTe CdZnTe HgI2 GaAs PbI2 GaSe AlSb YAG LSO LuAP

10-2 Direct-Zeff 50.24 41.43 60.60 32.10 61.64 32.71 45.87 26.00 64.73 62.49

ZXCOM 50.19 46.29 66.51 32.02 67.32 32.53 45.80 28.64 64.62 62.23

10-1 Direct-Zeff 50.22 47.80 68.87 32.07 70.44 32.67 48.06 25.19 65.55 63.95

ZXCOM 50.25 47.91 63.92 32.01 64.71 32.58 47.44 21.95 62.67 60.56

100 Direct-Zeff 50.02 43.62 63.40 32.00 64.33 32.50 32.77 14.04 27.27 23.98

ZXCOM 50.36 48.77 71.92 32.12 73.76 32.79 49.61 34.99 68.37 67.54

101 Direct-Zeff 50.05 44.58 63.60 32.02 64.48 32.54 38.09 16.79 38.26 33.92

ZXCOM 50.41 49.04 73.59 32.13 75.57 32.82 49.81 35.34 68.95 68.29

102 Direct-Zeff 50.07 45.13 63.98 32.03 64.92 32.56 41.79 20.45 49.07 44.63

ZXCOM 50.50 49.44 75.72 32.15 77.80 32.87 50.09 36.03 69.59 69.15

103 Direct-Zeff 50.07 45.15 63.94 32.03 64.92 32.56 41.96 20.64 49.52 45.11

ZXCOM 50.50 49.44 75.72 32.15 77.80 32.87 50.09 36.03 69.59 69.15

104 Direct-Zeff 50.07 45.14 63.96 32.03 64.89 32.56 41.92 20.63 49.45 45.03

ZXCOM 50.50 49.44 75.72 32.15 77.80 32.87 50.09 36.03 69.59 69.15

105 Direct-Zeff 50.07 45.14 63.93 32.03 64.91 32.56 41.93 20.62 49.45 45.04

ZXCOM 50.66 49.90 77.52 32.18 79.61 32.95 50.32 36.58 70.14 69.86
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variation in Nel for pair production (nuclear) in Fig. 12 can

be explained similarly to Fig. 11.

3.6 Pair production (electric field)

For the pair production in the electric field, the varia-

tions in Zeff and Nel with photon energy are shown in

Figs. 13 and 14, respectively. From Fig. 13, it is found that

Zeff is independent of photon energy, except for the YAG,

AlSb, LSO and LuAP detectors. Also, Zeff for the YAG,

AlSb, LSO, and LuAP detectors becomes independent of

photon energy beyond 1000 MeV. The highest-Z contain-

ing detector (PbI2) is found to have the highest Zeff. The

variation in Nel for pair production (electric) in Fig. 14 can

be explained similarly to Fig. 13.

In Fig. 15, the ratio of effective atomic numbers for pair

production for nuclear to electric is shown and found to be

independent from energy, except for LuAP and LSO.

3.7 Comparison with ZXCOM

The effective atomic numbers calculated using Eq. (4)

were compared with ZXCOM software [29]. In the

ZXCOM process, the effective atomic number is charac-

terized using Rayleigh and Compton scattering. İçelli [30]

showed the theoretical and computational approach for

obtaining data from the R/C ratio (R). Details of the

ZXCOM method and theoretical approach for calculation

are reported in the literature [29, 30]. The effective atomic

numbers using both methods are given in Table 1. From

Table 1, it is found that effective atomic numbers calcu-

lated using direct-Zeff and ZXCOM are comparable with

each other, with an exception of a few energies.

4 Conclusion

In the present investigation, we have calculated mass

attenuation coefficients, effective atomic numbers, and

effective electron densities for semiconductor and scin-

tillation detectors. The investigation is summarized

below:

• Effective atomic numbers for semiconductor and scin-

tillation detectors are found to be constant in the pair

production region (E[ 100 MeV).

• Effective atomic numbers calculated using the direct-

Zeff and ZXCOM programs are found to be comparable.

• Efficiencies of semiconductor and scintillation detec-

tors are presented in terms of effective atomic numbers.
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