

²³⁸U and ²³²Th concentrations measured in different medical drugs by using solid-state nuclear track detectors and resulting radiation doses to the skin of patients

M. A. Misdaq^{1,2} · A. Matrane^{1,2,3}

Received: 12 June 2015/Revised: 10 August 2015/Accepted: 20 August 2015/Published online: 21 April 2016 © Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Science+Business Media Singapore 2016

Abstract Urban populations in Morocco receive free medical drugs as prescribed by doctors in district health centres. To explore the exposure pathway of ²³⁸U and ²³²Th and their decay products on the skin of patients, these radionuclides were measured in various medical drugs by using solid-state nuclear track detectors (SSNTDs).The measured concentrations range of ²³⁸U and ²³²Th in the medical drug samples of interest vary from (4.3 ± 0.3) to (11.1 ± 0.7) mBq l⁻¹ and (0.49 ± 0.03) to (1.3 ± 0.1) mBq l⁻¹, respectively. A new dosimetric model, based on the concept of specific alpha-dose and alpha-particle residual energy, was developed for evaluating radiation doses to skin following the application of different medical drugs by patients. The maximum total equivalent effective dose to skin due to the ²³⁸U and ²³²Th series from cutaneous application of different medical drugs by patients was found to be 2.8 mSv year⁻¹ cm⁻².

Keywords Nuclear track detectors \cdot Medical drugs \cdot ²³⁸U and ²³²Th concentrations \cdot Radiation dose assessment to skin

M. A. Misdaq misdaq@uca.ma

- ¹ Nuclear Physics and Techniques Laboratory, Faculty of Sciences Semlalia, University of Cadi Ayyad, BP. 2390, 40000 Marrakech, Morocco
- ² URAC-15 Research Unit Associated to the CNRST, Rabat, Morocco
- ³ Nuclear Medicine Service, Mohamed VI University Hospital Centre, Faculty of Medicine and Pharmacy, University of Cadi Ayyad, 40000 Marrakech, Morocco

1 Introduction

The skin is the largest organ of the human body, with a total area of about 20 square feet. It protects individuals from microbes, helps regulate body temperature, and limits the sensation of touch, heat, and cold. The skin has three layers: (1) the epidermis, the outermost layer of skin which provides a waterproof barrier and creates the skin tone; (2) the dermis, beneath the epidermis which contains tough connective tissue, hair follicles, and sweat glands, and (3) the deeper subcutaneous tissue (hypodermis) which is made of fat and connective tissue. The critical cells in the skin are in the basal layer of the epidermis. There are considerable variations in the thickness of human epidermis with respect to body site [1]. On the face and trunk, the median thickness of the epidermis was 20-40 µm. In general, on the arms and legs, it was 40-60 µm, although there were some considerably thicker areas on the hands and feet [1]. A more detailed evaluation of the hands showed fingertips to have the greatest thickness, greater than 160 μ m [1]. The degree of undulation of the basal layer was found to increase with increasing epidermal thickness. Naturally occurring radionuclides of terrestrial origin are present in various degrees in all media of the environment and contribute significantly to external and internal doses of the population [2]. Among them, important radionuclides of interest belong to the ²³⁸U and ²³²Th series. These radionuclides emit alpha- and beta-particles, as well as gamma rays. The different forms of emitted radiation have different energies and penetrating power and, thus, have different effects on living beings. Once the radionuclides of the ²³⁸U and ²³²Th series are placed on the skin, they emit alpha-particles with a range of several tens of microns (between 20 and 100 μm). This is comparable

with the depth of the basal layer of the epidermis. Due to their presence in soil and phosphate fertilizers, primordial radionuclides and their progeny are transferred via water from soil to plant flowers and medicinal plants to medical drugs. Thus, it is necessary to measure the radionuclide contents of medical drugs to assess the potential radiation doses, and if necessary, to take action to reduce the exposure of patients to radiation. ²³⁸U and ²³²Th concentrations have been measured in various medicinal plants by using solid-state nuclear track detectors [3]. ²³⁸U and ²³²Th have also been analysed in aerial parts and roots of the Peperomia pellucida medicinal plant using alpha spectrometry after radiochemical separation by ionic exchange resins and measurement with a silicon surface-barrier detector [4]. However, this technique is both destructive (chemical agents are added to the material sample) and expensive. ²³⁸U and ²³²Th have been analysed in different food samples using inductively coupled plasma mass spectrometry (ICP-MS), which is also destructive [5]. Committed effective doses due to the ²³⁸U and ²³²Th radioisotopes following the ingestion of various foodstuffs by individuals have been determined [6]. In previous works, we evaluated committed effective doses to skin due

Table 1 Description of the studied medical drugs

to only three alpha-emitting nuclei (²³⁸U, ²³²Th, and ²²²Rn) from the application of Moroccan black soap [7] and olive oil [8] samples without taking into account the residual energies of the emitted alpha-particles.

In the present work, CR-39 and LR-115 type II solidstate nuclear track detectors (SSNTDs) were used for measuring 238 U and 232 Th alpha-activities per unit volume in different medical drugs. During the full course of medical drug application to different age groups of patients, the committed effective doses to the skin were evaluated due to alpha-particles emitted by the radionuclei of the 238 U and 232 Th series.

2 Methods of study

2.1 Description of the medical drugs studied

Medical drugs are cutaneously prescribed by doctors for patients in dermatology, cardiology, gastro-enterology, anaesthesia–resuscitation, gynaecology, pneumology, and rheumatology. The properties and dosages of the considered medical drugs are shown in Table 1.

Medical drugs	Properties	Dosage	Medical speciality
		1	Annetheric
PI	Used for surface anaesthesia (skin and mucosa)	I g maximum per 10 cm ⁻ during 20–30 min	Anaesthesia
P2	Vascular protective and veinotonic	2 applications per day during 1 month	Cardiology
P3	Dermocorticoid	1-2 applications per day during 15 days	Dermatology
P4	Antibacterial agent	1 application per day during 7-15 days	Dermatology
P5	Antifungal agent	2 applications per day during 1 month	Dermatology
P6	Antiparasitic agent	2 applications per day during 8 days	Dermatology
P7	Used for antiseptic skin	1 application per day during 7 days	Dermatology
P8	Antiherpetic agent	5 applications per day during 5-10 days	Dermatology
P9	Used for antiacne treatment	1-2 applications per day during 3 months	Dermatology
P10	Used for antipruritic treatment	2-3 applications per day during 3-5 days	Dermatology
P11	Used for local treatment of skin ulcers	1-2 applications per day during 7 days	Dermatology
P12	Used for the treatment of haemorrhoids	2-3 applications per day during 7 days	Gastroenterology
P13	Estrogen agent	1 application per day 24–28 days per month during 5 years	Gynaecology
P14	Progestin agent	1 application per day during 1 month	Gynaecology
P15	Used in adjunctive therapy and as decongestant in respiratory diseases	2 applications per day during 3 days	Pneumology
P16	Non-steroidal anti inflammatory	3-4 applications per day during 2 weeks	Rheumatology
P17	Used for the treatment of psoriasis	1-2 applications per day during 2 months	Dermatology
P18	Keratolytic agent	1 application per day during 3 month	Dermatology
P19	Used for the treatment of hyperpigmented lesions	2 applications per day during 3 month	Dermatology
P20	Used for rosacea treatment	2 applications per day during 3-4 months	Dermatology
P21	Used for local treatment of painful muscle contractures	2 applications per day during 2 weeks	Rheumatology

2.2 Determination of ²³⁸U and ²³²Th alpha-activities per unit volume in medical drugs

The alpha-activities of ²³⁸U and ²³²Th were measured using the following types of solid-state nuclear track detectors (SSNTDs):

- CR-39 discs, 2 cm in radius and 500 µm thick, manufactured by Pershore Mouldings Ltd, United Kingdom;
- LR-115 type II discs, 2 cm in radius, comprising 12 µm of cellulose nitrate on a 100-µm-thick polyester base, manufactured by Kodak Pathé, France, and marketed by Dosirad, France.

The detectors were separately placed in close contact with different medical drugs in hermetically sealed (using glue and a cellophane tape) HDPE (high-density polyethylene) cylindrical plastic containers for 30 days (Fig. 1). During this period of time, alpha-particles emitted by the nuclei of ²³⁸U, ²³²Th, and their daughters inside the medical drug samples exposed the SSNTD films. After irradiation, the exposed SSNTDs were etched in two NaOH solutions: one was 2.5 mol 1^{-1} at 60 °C for 2 h for the LR-115 II films and the other was 6.25 mol 1^{-1} at 70 °C for 7 h for the CR-39 detectors [9]. After chemical treatment, the track densities registered on the CR-39 and LR-115 II SSNTDs were determined by an ordinary microscope. Backgrounds on the CR-39 and LR-115 II SSNTDs were evaluated by placing these films in sealed plastic containers, containing ambient air, identical to those used for analysing the medical drug samples, for 30 days and counting the resulting track densities. This operation was repeated ten times, and it was found that the track densities registered on the CR-39 and LR-115 II detectors were identical within the statistical uncertainties. The reproducibility of the method was checked by analysing a set of ten samples of the same medical drug. Track density

Fig. 1 Arrangement of a solid-state nuclear track detector (SSNTD) on a medical drug material sample in a well-sealed plastic container with a radius of q = 2 cm, depth of D = 1 cm, and thickness of t = 0.5 cm. Glue is put between the plastic cover and plastic container and both are covered by a cellophane tape with a 0.2-cm thickness

production rates registered on the CR-39 and LR-115 II detectors were evaluated for the P13 medical drug sample. Data obtained, for instance, for the P13 medical drug sample was: $\rho_{\rm G}^{\rm CR} = (2.41 \pm 0.01) \times 10^{-5}$ and $\rho_{\rm G}^{\rm LR} = (9.25 \pm 0.05) \times 10^{-5}$ tracks cm⁻² s⁻¹, respectively. The relative uncertainty of the average track density rate determination is smaller than 1 %.

There are three main factors which disturb the radioactive secular equilibrium between ²³⁸U and its progeny and between 232 Th and its daughters: (a) the addition of any chemical compounds to the medical drug sample, (b) any escape of radon and thoron gases, and (c) the exposure time if it is shorter than 25 days. As the detection system used was well-sealed (i.e., there was no escape of radon and thoron) and the exposure time was 30 days, a radioactive secular equilibrium is established between ²³⁸U and each of its decay products and between ²³²Th and each of its daughters. For the experimental etching conditions, the residual thickness of the LR-115 type II detectors measured by means of a mechanical comparator is 5 µm. This thickness defines the lower ($E_{\min} = 1.6 \text{ MeV}$) and upper ($E_{\text{max}} = 4.7 \text{ MeV}$) energy limits for the registration of tracks of alpha-particles in LR-115 type II films [10]. All alpha-particles emitted by the ²³⁸U and ²³²Th series that reach the LR-115 II detector at an angle smaller than its critical angle of etching, θ'_{c} , with a residual energy between 1.6 and 4.7 MeV are registered as bright track-holes. The CR-39 detector is sensitive to all alpha-particles reaching its surface at an angle smaller than its critical angle of etching, $\theta_{\rm c}$. The critical angles of etching, $\theta_{\rm c}'$ and $\theta_{\rm c}$, were calculated using the method described in detail by Misdaq et al. [11].

The global track density rates (tracks cm⁻² s⁻¹), due to alpha-particles emitted by the ²³⁸U and ²³²Th series inside a material sample, registered on the CR-39 (ρ_G^{CR}) and LR-115 II (ρ_G^{LR}) detectors, after subtracting the corresponding backgrounds, are, respectively, given by [9]:

$$\rho_{\rm G}^{\rm CR} = \frac{\pi q^2}{2 \, S_{\rm d}} A_{\rm c} \left(^{238} {\rm U}\right) \left[\sum_{j=1}^8 k_j \varepsilon_j^{\rm CR} R_j + \frac{A_{\rm c} (^{232} {\rm Th})}{A_{\rm c} (^{238} {\rm U})} \sum_{j=1}^7 k_j^{\prime} \varepsilon_j^{\prime {\rm CR}} R_j^{\prime} \right], \tag{1}$$

and

$$\rho_{\rm G}^{\rm LR} = \frac{\pi q^2}{2S'_{\rm d}} A_{\rm c} \left(^{238} {\rm U}\right) \left[\sum_{j=1}^{8} k_j \varepsilon_j^{\rm LR} R_j + \frac{A_{\rm c} (^{232} {\rm Th})}{A_{\rm c} (^{238} {\rm U})} \sum_{j=1}^{7} k'_j \varepsilon'_j^{\rm LR} R'_j \right],$$
(2)

where $A_c(^{238}\text{U})$, expressed in Bq cm⁻³, is the activity per unit volume of ^{238}U inside a medical drug sample. $A_c(^{232}\text{Th})$, expressed in Bq cm⁻³, is the activity per unit volume of ^{232}Th inside a medical drug sample. S_d and S'_d

are, respectively, the surface areas of the CR-39 and LR-115 II films. R_j and R'_j are the ranges, in the medical drug sample, of an alpha-particle of index *j* and initial energy E_{α_j} emitted by the nuclei of the ²³⁸U and ²³²Th series,

Table 2 Ranges of alpha-particles emitted by the ^{238}U and ^{232}Th series inside skin

Nuclide	E_{α_j} (MeV)	k_j	R_j (µm)
(a) Uranium f	amily		
²³⁸ U	4.19	1	25.64
²³⁰ Th	4.62	1	29.52
²³⁴ U	4.77	1	30.93
²²⁶ Ra	4.78	1	31.03
²¹⁰ Po	5.3	1	36.16
²²² Rn	5.49	1	38.13
²¹⁸ Po	6.00	1	43.64
²¹⁴ Po	7.68	1	64.19
Nuclide	$E_{\alpha_{f}}$ (MeV)	$k_{j}^{'}$	<i>R_{j'}</i> (μm)
(b) Thorium f	amily		
²³² Th	4.01	1	24.09
²²⁸ Th	5.42	1	37.39
²²⁴ Ra	5.71	1	40.46
²¹² Bi	6.05	0.36	44.19
²²⁰ Rn	6.29	1	46.93
²¹⁶ Po	6.78	1	52.73
²¹² Po	8.78	0.64	79.62

Fig. 2 Ranges of an alphaparticle inside the medical drug layer ($\overline{MF} = x_j$) and epidermis ($IF = R_j^{\text{skin}}$). E_{α_j} is the initial alpha-particle energy and $E_{\alpha_j}^{\text{Res}}$ its residual energy on the point I. The medical drug layer has a depth of about 500 μm respectively. k_j and k'_j are, respectively, the branching ratios corresponding to the disintegration of the nuclei of the ²³⁸U and ²³²Th series. ε_j^{CR} , ε_j^{LR} , ε_j^{LR} and $\varepsilon_j'^{LR}$ are, respectively, the detection efficiencies of the CR-39 and LR-115 II detectors for the emitted alpha-particles [9].

Combining Eqs. (1) and (2), we obtain the following relationship between the track density rates and 232 Th to 238 U ratios:

$$\frac{A_{\rm c}(^{232}{\rm Th})}{A_{\rm c}(^{238}{\rm U})} = \frac{\frac{S'_{\rm d}}{S_{\rm d}}\sum_{j=1}^{8} k_j \varepsilon_j^{\rm CR} R_j - \frac{\rho_{\rm G}^{\rm CR}}{\rho_{\rm G}^{\rm LR}}\sum_{j=1}^{8} k_j \varepsilon_j^{\rm LR} R_j}{\frac{\rho_{\rm G}^{\rm CR}}{\rho_{\rm G}^{\rm LR}}\sum_{j=1}^{7} k'_j \varepsilon'_j^{\rm CR} R'_j - \frac{S'_{\rm d}}{S_{\rm d}}\sum_{j=1}^{7} k'_j \varepsilon'_j^{\rm LR} R'_j}.$$
(3)

The 238 U alpha-activity per unit volume of a medical drug sample is given by (Eq. 2):

$$A_{\rm c} {238}{\rm U} = \frac{2S'_{\rm d} \rho_{\rm LR}^{\rm LR}}{\pi q^2 \left[\sum_{j=1}^{8} k_j \varepsilon_j^{\rm LR} R_j + \frac{A_{\rm c} {232}{\rm Th}}{A_{\rm c} {238}{\rm U}} \sum_{j=1}^{7} k'_j \varepsilon'_j^{\rm LR} R'_j \right]}.$$
(4)

By measuring the ρ_G^{CR} and ρ_G^{LR} track density rates and calculating the ε_j^{CR} , ε_j^{CR} , ε_j^{LR} , and ε_j^{LR} detection efficiencies [9] we evaluate the $\frac{A_c(^{232} \text{ Th})}{A_c(^{238} \text{ U})}$ ratio (Eq. 3) and, consequently, the 238 U and 232 Th alpha-activities per unit volume in a given medical drug sample (Eq. 4).

The ranges of the emitted alpha-particles in medical drugs and SSNTDs were calculated by using the TRIM (Transport of Ions in Materials) program [12].

skin (b)

2.3 A new dosimetric model for evaluating annual committed equivalent doses to skin due to alphaparticles emitted by the nuclei of the ²³⁸U and ²³²Th series from cutaneous application of medical drugs

The epidermis of the human skin is divided into several clearly defined zones [13]. Indeed, when a medical drug layer is placed on the skin of a patient, the nuclei of the ²³⁸U and ²³²Th series emit alpha-particles with a range of several tens of microns (20-100 µm) (Table 2). This is comparable with the depth of the basal layer of the epidermis, which is more sensitive $(50-100 \ \mu m)$ [14].

An alpha-particle with an index of *j* and initial energy of E_{α_i} emitted from a nucleus localized on the point *M* inside the medical drug layer (Fig. 2) has a range:

$$\overline{MF} = x_i + R_i^{\text{Skin}},\tag{5}$$

where x_i ($x_i \le R_i$, R_i is the range of the alpha-particle inside the medical drug layer) is the distance between the emission point and the skin surface (Fig. 2) and R_i^{skin} is the range of the alpha-particle in skin.

The alpha-particle residual energy, $E_{\alpha_i}^{\text{Res}}$, which corresponds to the $(R_i - x_i)$ range is determined by using the energy-range relation in the medical drug (Fig. 3a). By using the energy-range relation in skin, one can determine the range of the alpha-particle in skin, R_i^{skin} (Fig. 3b). For $x_j = R_j$ and $E_{\alpha_j}^{\text{Res}} = 0$ MeV, there is no energy loss of alpha-particles in skin (case 1 of Fig. 2). For $x_j = 0 \ \mu m$ and $E_{\alpha_i}^{\text{Res}} = E_{\alpha_j}$, the energy loss of alpha-particles in the skin is at a maximum (R_i^{skin} maximum) (case 3 of Fig. 2).

For $x_j \prec R_j$ and $E_{\alpha_j}^{\text{Res}} \prec E_{\alpha_j}$, the range of alpha-particle in the skin is lower than those corresponding to $x_j = 0 \ \mu\text{m}$ (case 2 of Fig. 2).

Alpha-equivalent dose rates (Svs^{-1}) to the human skin due to a radionuclide of index of *j* belonging to the ²³⁸U series and a radionuclide of index of *j'* belonging to the ²³²Th series from the application of medical drugs by patients are, respectively, given by:

$$\dot{H}_{\rm skin}(j)(t) = A_{\rm c}^{\rm skin}(j)(t) D_{\rm sp}^{\rm skin}(j) W_{\rm R},\tag{6}$$

and

$$\dot{H}_{\rm skin}\left(j'\right)(t) = A_{\rm c}^{\rm skin}\left(j'\right)(t)D_{\rm sp}^{\rm skin}\left(j'\right)W_{\rm R},\tag{7}$$

where $A_c^{\text{skin}}(j)(t)$ (Bq) is the alpha-activity, at time *t*, in skin due to a radionuclide of index *j* belonging to the ²³⁸U series $A_c^{\text{skin}}(j')(t)$ (Bq) is the alpha-activity, at time *t*, in skin due to a radionuclide of index *j'* belonging to the ²³²Th series. $D_{\text{Sp}}^{\text{skin}}(j)$ is the specific alpha-dose (Gy) deposited by 1 Bq of a radionuclide of index *j* belonging to the ²³⁸U series in skin. $D_{\text{Sp}}^{\text{skin}}(j')$ is the specific alpha-dose (Gy) deposited by 1 Bq of a radionuclide of index *j'* belonging to the 232 Th series in skin. $W_{\rm R}$ is the radiation weighting factor, which is equal to 20 for alpha-particles [13].

The $A_c^{\text{skin}}(j)(t)$ and $A_c^{\text{skin}}(j')(t)$ alpha-activities are, respectively, given by:

$$A_{\rm c}^{\rm skin}(j)(t) = \frac{1}{2} A_{\rm c}^{\rm sample} \left(^{238} \mathrm{U}\right) \mathrm{e}^{-\lambda_j t} \times 1 \,\mathrm{cm}^3,\tag{8}$$

and

$$A_{\rm c}^{\rm skin}\left(j'\right)(t) = \frac{1}{2}A_{\rm c}^{\rm sample}\left(^{232}\rm{Th}\right)e^{-\lambda_{j'}t} \times 1\,\rm{cm}^3,\tag{9}$$

where $A_c^{\text{sample}}(^{238}\text{U})$ (Bq cm⁻³) is the alpha-activity due to ²³⁸U inside a medical drug sample. $A_c^{\text{sample}}(^{232}\text{Th})$ (Bq cm⁻³) is the alpha-activity due to ²³²Th inside a medical drug sample. λ_j is the radioactive decay constant of a radionuclide of index *j* belonging to the ²³⁸U series and $\lambda_{j'}$ is the radioactive decay constant of a radionuclide of index *j'* belonging to the ²³²Th series. The term $\frac{1}{2}$ means that only half of the emitted alpha-particles inside a medical drug sample may lose their energies inside the skin.

The $D_{\text{Sp}}^{\text{skin}}(j)$ and $D_{\text{Sp}}^{\text{skin}}(j')$ specific alpha-doses are, respectively, given by:

Table 3 Data obtained for the ²³⁸U and ²³²Th contents in different medical drug samples

Medical drug	$\rho_{\rm G}^{\rm LR} (10^{-5} {\rm tr})$	$\rho_{\rm G}^{\rm CR}$ (10 ⁻⁵ tr	This method				IDMS	
samples	$cm^{-2} s^{-1}$)	$cm^{-2} s^{-1}$)	C (²³⁸ U) (ppm)	C (²³² Th) (ppm)	$\begin{array}{l} A_{c}(^{238}U) \\ (mBq\ l^{-1}) \end{array}$	$A_c(^{232}Th)$ (mBq l ⁻¹)	C (²³⁸ U) (ppm)	C (²³² Th) (ppm)
P1	2.29 ± 0.16	8.74 ± 0.61	0.74 ± 0.05	0.28 ± 0.02	9.1 ± 0.6	1.15 ± 0.07		
P2	1.08 ± 0.09	4.13 ± 0.33	0.35 ± 0.02	0.15 ± 0.01	4.3 ± 0.3	0.62 ± 0.04	0.36 ± 0.01	0.14 ± 0.01
P3	2.33 ± 0.20	8.89 ± 0.8	0.76 ± 0.05	0.28 ± 0.02	9.3 ± 0.7	1.16 ± 0.07		
P4	1.85 ± 0.13	7.05 ± 0.49	0.61 ± 0.04	0.21 ± 0.01	7.5 ± 0.5	0.86 ± 0.05	0.60 ± 0.03	0.20 ± 0.01
P5	2.48 ± 0.2	9.36 ± 0.75	0.81 ± 0.06	0.23 ± 0.01	9.9 ± 0.7	0.95 ± 0.06	0.82 ± 0.04	0.24 ± 0.01
P6	1.29 ± 0.10	4.93 ± 0.37	0.42 ± 0.03	0.17 ± 0.01	5.2 ± 0.3	0.70 ± 0.05		
P7	1.41 ± 0.11	5.39 ± 0.44	0.45 ± 0.03	0.19 ± 0.01	5.5 ± 0.4	0.78 ± 0.06		
P8	2.02 ± 0.14	7.69 ± 0.54	0.67 ± 0.05	0.21 ± 0.01	8.2 ± 0.5	0.86 ± 0.06	0.66 ± 0.04	0.20 ± 0.01
P9	2.24 ± 0.18	8.54 ± 0.71	0.73 ± 0.05	0.26 ± 0.02	9.0 ± 0.7	1.07 ± 0.07	0.74 ± 0.04	0.25 ± 0.01
P10	2.50 ± 0.19	9.51 ± 0.78	0.83 ± 0.06	0.24 ± 0.01	10.2 ± 0.8	0.98 ± 0.07	0.82 ± 0.04	0.25 ± 0.01
P11	1.69 ± 0.12	6.42 ± 0.45	0.56 ± 0.04	0.15 ± 0.01	6.9 ± 0.4	0.62 ± 0.04		
P12	2.17 ± 0.17	8.27 ± 0.66	0.71 ± 0.05	0.24 ± 0.01	8.7 ± 0.6	0.98 ± 0.07		
P13	2.42 ± 0.21	9.24 ± 0.76	0.78 ± 0.06	0.30 ± 0.02	9.6 ± 0.7	1.23 ± 0.07	0.79 ± 0.05	0.32 ± 0.01
P14	1.68 ± 0.12	6.37 ± 0.45	0.57 ± 0.04	0.120 ± 0.006	7.0 ± 0.5	0.49 ± 0.03	0.58 ± 0.03	0.125 ± 0.004
P15	2.07 ± 0.15	7.88 ± 0.63	0.68 ± 0.05	0.21 ± 0.01	8.4 ± 0.6	0.86 ± 0.06	0.67 ± 0.04	0.20 ± 0.01
P16	1.95 ± 0.13	7.42 ± 0.61	0.64 ± 0.04	0.19 ± 0.01	7.9 ± 0.6	0.78 ± 0.05		
P17	2.53 ± 0.18	9.64 ± 0.67	0.84 ± 0.06	0.28 ± 0.02	10.2 ± 0.7	1.15 ± 0.07		
P18	2.58 ± 0.23	9.85 ± 0.89	0.85 ± 0.06	0.32 ± 0.02	10.3 ± 0.8	1.3 ± 0.1		
P19	2.05 ± 0.14	7.80 ± 0.55	0.68 ± 0.05	0.20 ± 0.01	8.4 ± 0.5	0.82 ± 0.05		
P20	2.71 ± 0.18	10.30 ± 0.52	0.90 ± 0.06	0.24 ± 0.01	11.1 ± 0.8	0.98 ± 0.06	0.92 ± 0.04	0.26 ± 0.01
P21	1.22 ± 0.10	4.66 ± 0.37	0.39 ± 0.03	0.16 ± 0.01	4.8 ± 0.3	0.66 ± 0.04		

Table 4Ctfrom cutane	ous application of d	doses to the epider	mis of skin (Sv year ags by (a) adult fem	(-1 cm^{-2}) due to all ale and (b) adult ma	residual energies of a ule	an alpha-particle of	index j and initial en	lergy E_{x_j} belonging to	the ²³⁸ U series
Medical drug samples	H (²³⁸ U) (10 ⁻⁸ Sv year ⁻¹ cm ⁻²)	$H^{(230}Th)$ (10 ⁻⁸ Sv year ⁻¹ cm ⁻²)	$H^{(234}U)$ (10 ⁻⁸ Sv year ⁻¹ cm ⁻²)	H (²²⁶ Ra) (10 ⁻⁸ Sv year ⁻¹ cm ⁻²)	H (²¹⁰ Po) (10 ⁻⁸ Sv year ⁻¹ cm ⁻²)	H (222 Rn) (10 ⁻⁸ Sv year ⁻¹ cm ⁻²)	H (²¹⁸ Po) (10 ⁻⁹ Sv year ⁻¹ cm ⁻²)	H (214 Po) (10 ⁻¹² Sv year ⁻¹ cm ⁻²)	$\begin{array}{c} H(U)(EP) \\ (\mu Sv \\ \mu sar^{-1} \ cm^{-2} \end{array} \end{array}$
(a)									
PI	1.97	2.2	2.79	2.23	2.43	2.49	3.96	4.20	0.14 ± 0.01
P2	1347	1471	1513	1516	1567	314	1.88	2	77 ± 6
P3	1461	1596	1641	1644	1747	638	4.07	4.32	76 ± 6
P4	1172	1280	1317	1319	1402	512	3.3	3.5	70 ± 6
P5	3113	3400	3497	3503	3620	724	4.34	4.59	179 ± 16
P6	431	471	484	485	522	289	2.25	2.4	27 ± 2
P7	404	441	453	454	490	290	2.41	2.56	25 ± 1
P8	858	937	964	996	1036	503	3.59	3.80	57 ± 4
P9	8421	9196	9459	9476	8782	656	3.91	4.14	460 ± 41
P10	532	581	598	599	648	444	4.45	4.71	34 ± 3
P11	502	549	564	565	610	361	3	3.2	32 ± 3
P12	637	695	715	717	773	458	3.8	4	40 ± 3
P13	33,608	36,702	37,751	37,813	23,428	701	4.2	4.4	1700 ± 153
P14	2191	2393	2461	2466	2548	510	3	3.23	126 ± 11
P15	2610	2850	2930	2940	3200	652	3.64	3.85	170 ± 15
P16	1230	1343	1381	1384	1471	537	3.43	3.63	73 ± 6
P17	6389	<i>L</i> 2017	7177	7189	7032	747	4.45	4.72	355 ± 31
P18	9687	10,578	10,881	10,900	10,102	757	4.50	4.77	529 ± 47
P19	7839	8561	8806	8821	8175	611	3.64	3.86	428 ± 38
P20	13,840	15,115	15,547	15,574	13,690	809	4.82	5.11	895 ± 80
P21	750	819	842	844	897	327	2.1	2.2	45 ± 4
(q)									
P1	1.72	1.92	2.44	1.94	2.12	2.18	3.46	3.67	0.12 ± 0.01
P2	1177	1285	1322	1324	1368	274	1.64	1.74	68 ± 6
P3	1461	1394	1434	1437	1527	557	3.56	3.70	76 ± 6
P4	1024	1119	1150	1152	1225	447	2.82	3.02	61 ± 5
P5	2720	2970	3055	3061	3163	633	3.79	4.017	156 ± 14
P6	377	411	423	424	465	252	1.96	2.08	23 ± 2
P7	353	385	396	397	428	254	2.11	2.23	22 ± 2
P8	750	819	842	844	905	440	3.14	3.32	46 ± 4
P9	7357	8034	8264	8279	8672	573	3.42	3.62	402 ± 36
P10	465	507	522	523	566	388	3.88	4.12	30 ± 2

Table 4 co	ontinued								
Medical drug samples	H (238 U) (10 ⁻⁸ Sv year ⁻¹ cm ⁻²)	$H_{(230}^{230}Th)$ (10 ⁻⁸ Sv year ⁻¹ cm ⁻²)	$H_{(10^{-8} Sv)}^{(234U)}$ (10 ⁻⁸ Sv year ⁻¹ cm ⁻²)	H (226 Ra) (10 ⁻⁸ Sv year ⁻¹ cm ⁻²)	H (210 Po) (10 ⁻⁸ Sv year ⁻¹ cm ⁻²)	H (222 Rn) (10 ⁻⁸ Sv year ⁻¹ cm ⁻²)	H ${}^{(218Po)}_{(10^{-9} Sv)}$ (10 ⁻⁹ Sv year ⁻¹ cm ⁻²)	H $\binom{2^{14}\text{Po}}{(10^{-12} \text{ Sv})}$ year ⁻¹ cm ⁻²	H(U)(EP) (μSv year ⁻¹ cm ⁻²)
P11	439	479	493	494	533	316	2.62	2.78	28 ± 2
P12	556	607	624	626	675	400	3.32	3.52	35 ± 2
P13	29,363	32,066	32,982	33,036	20,468	613	3.66	3.87	1485 ± 133
P14	1914	2091	2150	2154	2226	455	2.67	2.82	110 ± 9
P15	2280	2490	2560	2570	2790	540	3.18	3.37	150 ± 9
P16	1074	1174	1207	1209	1285	469	3	3.17	64 ± 5
P17	5582	9609	6270	6281	6143	652	3.89	4.12	31 ± 2
P18	8463	9242	9506	9523	8826	659	3.93	4.16	462 ± 41
P19	6849	7480	7693	7077	7143	534	3.18	3.37	374 ± 33
P20	12,092	13,206	13,583	13,607	11,961	707	4.21	4.46	789 ± 71
P21	655	716	736	738	784	286	1.83	1.94	39 ± 3

$$D_{\rm sp}^{\rm Skin}(j) = k \frac{k_j}{d_{\rm Skin} S_{\rm Skin}} \frac{E_{\alpha_j}^{\rm Res}}{R_j^{\rm Skin}},\tag{10}$$

and

$$D_{\rm sp}^{\rm Skin}\left(j'\right) = k \frac{k_{j'}}{d_{\rm Skin} S_{\rm Skin}} \frac{E_{\alpha_{j'}}^{\rm Res}}{R_{j'}^{\rm Skin}},\tag{11}$$

where d_s is the density of skin (g cm⁻³). S_{skin} is the surface skin (cm²). $k = 1.6 \times 10^{-13}$ (J MeV⁻¹) is a conversion factor. R_i^{skin} is the range, in skin, of an alpha-particle of index *j* and a residual energy, $E_{\alpha_i}^{\text{Res}}$, belonging to the ²³⁸U series. R_{i}^{skin} is the range, in skin, of an alpha-particle of index *j* and a residual energy, $E_{\alpha_{j'}}^{\text{Res}}$, belonging to the ²³²Th series (Fig. 3).

By integrating Eqs. 6 and 7, committed equivalent doses (Sv) to skin due to an alpha-particle of residual energy, E_{α}^{Res} , emitted by a radionuclide of index *j* belonging to the 238 U series and an alpha-particle of residual energy, $E_{\alpha_{f}}^{\text{Res}}$, emitted by a radionuclide of index j' belonging to the ²³²Th series from the application of a medical drug sample are, respectively, given by:

$$H_{\rm skin}(j) = \frac{D_{\rm sp}^{\rm skin}(j)W_{\rm R}}{2\lambda_j} A_{\rm c}^{\rm sample} \left(^{238}{\rm U}\right) \left(1 - {\rm e}^{-\lambda_j t_{\rm a}}\right),\tag{12}$$

and

$$H_{\rm skin}\left(j'\right) = \frac{D_{\rm sp}^{\rm skin}\left(j'\right)W_{\rm R}}{2\lambda_{j'}}A_{\rm c}^{\rm sample}\left(^{232}\rm{Th}\right)\left(1 - e^{-\lambda_{j'}t_{\rm a}}\right),\quad(13)$$

where t_a is the application time.

Committed equivalent doses to the epidermis (EP) of the skin (Sv) due to all residual energies of an alpha-particle of index j and initial energy E_{α_j} belonging to the ²³⁸U series and an alpha-particle of index j' and initial energy $E_{\alpha_{J}}$ belonging to the ²³²Th series are, respectively, given by:

$$H(j)(\text{EP}) = \frac{kk_j A_c^{\text{Sample}} (^{238}\text{U}) \left(1 - e^{-\lambda_j t_a}\right)}{2\lambda_j d_{\text{skin}} S_{\text{Skin}} E_{\alpha_j}^{\text{Res}}} \int\limits_{0}^{E_{\alpha_j}} \frac{E_{\alpha_j}}{R_j^{\text{Skin}} \left(E_{\alpha_j}^{\text{Res}}\right)} dE_{\alpha_j}^{\text{Res}},$$
(14)

and

$$H(j')(\text{EP}) = \frac{kk_{j'}A_{\text{c}}^{\text{Sample}}(^{232}\text{Th})(1-e^{-\lambda_{j'}t_a})}{2\lambda_{j'}d_{\text{skin}}S_{\text{Skin}}E_{\alpha_{j'}}^{\text{Res}}} \int\limits_{0}^{E_{\alpha_{j'}}} \frac{E_{\alpha_{j'}}^{\text{Res}}}{R_{j'}^{\text{Skin}}(E_{\alpha_{j'}}^{\text{Res}})} dE_{\alpha_{j}}^{\text{Res}},$$
(15)

where $\Delta E_{\alpha_j}^{\text{Res}}$ and $\Delta E_{\alpha_{j'}}^{\text{Res}}$ are the chosen steps. Committed equivalent doses (Sv year⁻¹ cm⁻²) to the skin surface of 1 cm^2 of the epidermis during an exposure time is equal to 1 year due to the alpha-particles emitted by the ²³⁸U (eight alpha-emitting nuclei) and ²³²Th (seven alpha-emitting nuclei) series from the application of a

Table 5 Com from cutaneou	mitted equivalent doses is application of differen	to the epidermis of skin nt medical drugs by (a)	1 (Sv year ^{-1} cm ^{-2}) due adult female and (b) a	e to all residual energi adult female	es of an alpha-particle	of index <i>j'</i> and initial e	nergy $E_{\alpha j'}$ belonging to	the ²³² Th series
Medical drug	H (232 Th) (10 ⁻⁸ Sv	H(²²⁸ Th) (10 ⁻⁸ Sv	$ m H(^{224} m Ra)$ (10 ⁻⁸ Sv	H (212 Bi) (10 ⁻⁹ Sv	H (220 Rn) (10 ⁻⁹ Sv	H $({}^{216}Po)$ $(10^{-12} Sv)$	H $(^{212}P_0)$ $(10^{-18}$ Sv	H(Th)(EP) (μSv year ⁻¹
samples	e^{-1} cm ⁻²	e^{-1} cm ⁻²	e^{-1} cm ⁻²	year $^{-1}$ cm $^{-2}$)	$sear^{-1}$ cm ⁻²)	e^{-1} cm ⁻²	e^{-1} cm ⁻²	cm^{-2}
(a)								
P1	1.89	2.47	2.58	8.26	1.24	3.77	6.85	0.080 ± 0.006
P2	1294	1664	1755	13.5	0.6	1.78	3.25	47 ± 4
P3	1403	1818	1908	29.3	1.27	3.9	7.04	45 ± 4
P4	1125	1458	1531	23.5	1.02	3.11	5.65	41 ± 3
P5	2989	3845	4056	31.2	1.35	4.13	7.50	109 ± 9
P6	414	538	563	16.2	0.7	2.14	3.89	15 ± 1
P7	388	505	528	17.4	0.8	2.3	4.17	14 ± 1
P8	824	1071	1122	25.8	1.12	3.4	6.2	30 ± 2
P9	8086	10,099	10,847	28.1	1.22	3.72	6.76	291 ± 26
P10	511	665	969	32	1.4	4.2	7.69	19 ± 1
P11	482	628	657	21.6	0.9	2.85	5.19	18 ± 1
P12	611	795	832	27.4	1.2	3.6	6.57	22 ± 2
P13	32,273	35,850	41,847	30	1.3	4	7.23	1100 ± 9
P14	2104	2706	2855	22	0.9	2.9	5.28	77 ± 6
P15	251	3270	3420	26	1.1	3.5	6.30	9.0 ± 0.8
P16	1181	1530	1606	24.7	1.07	3.26	5.92	43 ± 3
P17	6135	7775	8288	32	1.4	4.2	7.70	22 ± 1
P18	9302	11,617	12,509	32	1.4	4.3	7.78	334 ± 30
P19	7528	9402	10,123	26.2	1.14	3.5	6.30	271 ± 24
P20	13,291	16,359	17,794	34.7	1.5	4.6	8.34	474 ± 42
P21	720	933	980	15	0.7	2	3.61	26 ± 2
(q)								
P1	1.66	2.16	2.26	7.22	1.08	3.3	5.99	0.070 ± 0.006
P2	1130	1453	1534	11.8	0.5	1.56	2.84	41 ± 3
P3	1226	1588	1667	25.6	1.11	3.39	6.15	45 ± 3
P4	983	1274	1337	20.5	0.89	2.72	4.96	36 ± 3
P5	2612	3359	3544	27.3	1.18	3.61	6.55	95 ± 8
P6	361	470	492	14.2	0.6	1.87	3.40	13 ± 1
P7	339	441	461	15.2	0.66	2	4.17	12 ± 1
P8	720	935	980	22.5	1	2.98	5.42	26 ± 2
P9	7065	8823	9500	24.6	1.07	3.25	5.91	254 ± 22
P10	446	581	608	27.9	1.21	3.7	6.72	16 ± 1

Table 5 con	ntinued							
Medical drug	H (²³² Th) (10 ⁻⁸ Sv	H(²²⁸ Th) (10 ⁻⁸ Sv	$H(^{224}Ra)$ (10 ⁻⁸ Sv	H (²¹² Bi) (10 ⁻⁹ Sv	H (220 Rn) (10 ⁻⁹ Sv	H (²¹⁶ Po) (10 ⁻¹² Sv	H (212 Po) (10 ⁻¹⁸ Sv	H(Th)(EP) (μSv year ⁻¹
samples	$year^{-1} cm^{-2}$	year ^{-1} cm ^{-2})	$year^{-1} cm^{-2}$	$year^{-1} cm^{-2}$	$year^{-1} cm^{-2}$	$year^{-1} cm^{-2}$	$year^{-1} cm^{-2}$	cm^{-2}
P11	421	548	574	18.9	0.82	2.5	4.53	15 ± 1
P12	534	695	727	23.9	1.04	3.2	5.74	20 ± 1
P13	28,196	31,321	36,561	26.3	1.14	3.5	6.32	961 ± 84
P14	1838	2364	2494	19.2	0.8	2.5	4.61	67 ± 6
P15	2190	2860	2980	25.1	1	3	5.50	81 ± 7
P16	1032	1337	1403	21.5	0.0	2.8	5.18	38 ± 3
P17	5360	6793	7241	28	1.2	3.7	6.67	194 ± 17
P18	8127	10,149	10,929	28.3	1.22	3.74	6.80	292 ± 26
P19	6577	8214	8845	23	1	c,	5.50	236 ± 21
P20	11,612	14,292	15546	30.3	1.31	4.01	7.28	414 ± 37
P21	629	815	856	13.1	0.6	1.7	3.16	23 ± 2

medical drug sample by patients are, respectively, given by:

$$H(U)(EP) = \sum_{j=1}^{8} H(j)(Tot),$$
 (16)

and

$$H(\mathrm{Th})(\mathrm{EP}) = \sum_{j'=1}^{7} H\left(j'\right)(\mathrm{Tot}).$$
(17)

3 Results and discussion

3.1 ²³⁸U and ²³²Th alpha-activities per unit volume in medical drugs

The 238 U (A_c (238 U)) and 232 Th (A_c (232 Th)) alpha-activities per unit volume were measured in various medical drugs prescribed by doctors for different age groups of patients. Data obtained is shown in Table 3. Since the track detectors utilized were etched in two NaOH solutions at optimal conditions of etching, ensuring good sensitivities of the SSNTDs and a good reproducibility of the registered track density rates determined by means of the same optical microscope with a magnification of 40x, only the statistical uncertainty on track counting is predominant. From the statistical uncertainty on track counting, the uncertainty on track density production per unit time was determined, and then the uncertainty of the measured ²³⁸U and ²³²Th concentrations was determined, which gave values of about 8 %. Natural uranium is formed by 238 U, 235 U, and 234 U radioisotopes with isotopic abundances equal to 99.27, 0.72, and 0.0055 %, respectively. So, the contribution of alpha-particles emitted by the ²³⁵U series to the global track densities registered on the SSNTDs utilized is negligible because they induce a relative uncertainty smaller than 1 %, which is included in the uncertainty on the 238 U and ²³²Th concentration determination (8 %). The data shown in Table 3 demonstrates that all medical drug samples studied contain more ²³⁸U than ²³²Th. This is probably due to the fact that raw materials used for the preparation of these medical drugs contain more ²³⁸U than 232 Th. It is to be noted that the 238 U contents of the P1, P3, P5, P9, P10, P12, P13, P17, P18, and P20 medical drugs are clearly higher than those of the P2, P4, P6, P7, P11, P14, and P21 medical drug samples (Table 3). We also noted that the ²³²Th contents of the P2, P6, P7, P11, P14, and P21 medical drug samples are clearly higher than those of the P1, P3, P9, P13, P17, and P18 samples (Table 3). The minimum detection activities (MDA) for ²³⁸U and ²³²Th were found to be equal to (0.81 ± 0.05) and (0.11 ± 0.01) mBq l^{-1} , respectively.

Table 6 Data obtained for the annual committed equivalent doses to the epidermis of the skin due to the 238 U (H(U)(EP)) and 232 Th (H(Th)(EP)) series from the application of different medical drugs by 15-year-old children

Medical drug samples	Annual commi	tted equivalent doses (μ Sv year ⁻¹ cm ⁻²)	
	15 years (fema	lle)	15 years (male)	
	H(U)(EP)	H(Th)(EP)	H(U)(EP)	H(Th)(EP)
P1	0.16 ± 0.01	0.0085 ± 0.0007	0.152 ± 0.01	0.0081 ± 0.0007
P4	76 ± 6	44 ± 3	73 ± 6	42 ± 3
P5	191 ± 17	117 ± 10	183 ± 16	112 ± 10
P6	29 ± 2	16 ± 1	28 ± 2	16 ± 1
Р9	493 ± 44	311 ± 27	471 ± 42	230 ± 20
P10	37 ± 3	20 ± 1	35 ± 3	19 ± 1
P11	34 ± 3	19 ± 1	33 ± 2	18 ± 1

annual committed equivalent doses to the epidermis of skin due to the 238 U (H(U)(EP)) and 232 Th (H(Th)(EP)) series from the application of different medical drugs by 10-year-old and 5-year-old children	Table 7 Data obtained for the
doses to the epidermis of skin due to the 238 U (H(U)(EP)) and 232 Th (H(Th)(EP)) series from the application of different medical drugs by 10-year-old and 5-year-old children	annual committed equivalent
due to the 238 U (H(U)(EP)) and 232 Th (H(Th)(EP)) series from the application of different medical drugs by 10-year-old and 5-year-old children	doses to the epidermis of skin
²³² Th (H(Th)(EP)) series from the application of different medical drugs by 10-year-old and 5-year-old children	due to the ²³⁸ U (H(U)(EP)) and
the application of different medical drugs by 10-year-old and 5-year-old children	²³² Th (H(Th)(EP)) series from
medical drugs by 10-year-old and 5-year-old children	the application of different
and 5-year-old children	medical drugs by 10-year-old
	and 5-year-old children

Medical drug samples	Annual commit	ted equivalent doses (μ Sv year ⁻¹ cm ⁻²)	
	10 years		5 years	
	H(U)(EP)	H(Th)(EP)	H(U)(EP)	H(Th)(EP)
P1	0.22 ± 0.01	0.012 ± 0.001	0.32 ± 0.02	0.017 ± 0.001
P4	105 ± 9	61 ± 5	151 ± 13	88 ± 7
P5	270 ± 24	161 ± 14	380 ± 34	232 ± 20
P6	40 ± 3	23 ± 2	58 ± 5	32 ± 3
P10	51 ± 4	28 ± 2	73 ± 6	40 ± 3
P11	47 ± 4	26 ± 2	68 ± 6	38 ± 3

In order to validate this method, 10 medical drugs were analysed using isotope dilution mass spectrometry (IDMS). Isotope dilution mass spectrometry is based on the addition of a known amount of enriched isotope (called the spike) to a medical drug sample. After equilibrium of the spike with the natural isotope of the element in the sample, mass spectrometry is used to measure the altered isotopic ratio(s). Data obtained by the two methods, for the 238 U and 232 Th contents, are in good agreement with each other (Table 3).

3.2 Committed equivalent doses to skin due to the radionuclides of the ²³⁸U and ²³²Th series from the application of medical drugs by patients

Committed equivalent doses to the epidermis of skin due to the alpha-emitting nuclei of the 238 U (H(U)(EP)) and 232 Th (H(Th)(EP)) series from the application of medical drugs by different age groups of patients have been evaluated by means of Eqs. 16 and 17, and the results are shown in Tables 4, 5, 6, and 7. The statistical relative uncertainty of the committed dose determination is 9 %. It

should be noted that H(U)(EP) and H(Th)(EP) increase with an increase in the application time of medical drugs by adults (Tables 1, 4, 5).

It is to be noted from the data shown in Tables 4, 5, 6, and 7 that H(U)(EP) and H(Th)(EP) due to cutaneous application of the medical drug P1 are negligible compared to those due to the other medical drugs for adults and children. This is because the application time for medical drug P1, used for surface anaesthesia, is shorter than those for the other medical drugs (Table 1). It is to be noted from the results shown in Table 4 that committed equivalent doses to the epidermis of the skin due to alpha-particles emitted by 214 Po (H(214 Po)) and 218 Po (H(218 Po)) are negligible compared to those corresponding to the other alpha-emitters of the ²³⁸U series. This is because they have smaller half-lives, 1.6×10^{-4} s and 3.05 min, respectively, than the other radionuclides. Also, one can note that committed equivalent doses to the epidermis due to ²¹²Po $(H(^{212}Po))$ and ^{216}Po $(H(^{216}Po))$ are negligible compared to those corresponding to the other alpha-emitters of the ²³²Th series (Table 5). This is due to the fact that these radionuclides possess smaller half-lives, 3.7×10^{-7} s and 0.158 s, respectively, than the other alpha-emitters of the ²³²Th series. It is to be noted that total committed

equivalent doses due to the ²³⁸U and ²³²Th series from cutaneous application of P1, P4, P5, P6, P10, and P11 medical drugs are higher for 5-year-old children than for the other age groups of patients (Tables 4, 5, 6, 7). This is because 5-year-old children possess smaller skin surface area than the other age groups of patients [1]. The maximum total committed equivalent dose to skin due to the ²³⁸U and ²³²Th series was found to be equal to 2.8 mSv year⁻¹ cm⁻², obtained for women applying the P13 medical drug (Tables 4a, 5a), which is significantly smaller than the dose limit for members of the public, which is of 50 mSv year⁻¹ cm⁻² [1].

4 Conclusion

In this study, it has been shown that the use of CR-39 and LR-115 type II solid-state nuclear track detectors (SSNTDs) allows for the evaluation of ²³⁸U and ²³²Th alpha-activities per unit volume in various medical drug samples. A new dosimetric model was developed for evaluating radiation doses to skin due to the alpha-emitting nuclei of the ²³⁸U and ²³²Th series from the application of medical drugs by patients. The committed equivalent doses to the epidermis of the skin due to the alpha-emitting nuclei of the ²³⁸U and ²³²Th series increase with the application time of medical drugs. It has been shown that only nine alpha-emitting nuclei belonging to the ²³⁸U and ²³²Th series significantly contribute to the global radiation dose to the epidermis of skin from the application of medical drugs by patients. It has also been shown that the committed effective dose due to the ²³⁸U and ²³²Th series increases when the skin surface area of the patients decreases. Thus, there is no radiation risk to the epidermis from cutaneous application of the studied medical drugs by patients. The SSNTD method used has the advantage of being inexpensive, accurate, sensitive, and does not require the use of standard sources for its calibration. It is a useful tool for measuring ²³⁸U and ²³²Th concentrations in medical drugs, as well as essential oils extracted from aromatic and medicinal plants.

Acknowledgments This work was realized under an URAC-15 research contract with the CNRST, Rabat, Morocco.

References

- 1. International Commission on Radiological Protection. *Recom*mendations of the International Commission on Radiological Protection, vol. 60, (ICRP Publication, 1990)
- 2. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionising radiation. Report to the General Assembly, New York, United Nations, 2000
- M.A. Misdaq, F. Ait Nouh, W. Bourzik, The influence of the soil and plant natures and pollution on the radon and thoron alphaactivities inside various herbal infusions by using solid state nuclear track detectors. J. Radioanal. Nucl. Chem. 247, 357–361 (2001). doi:10.1023/A:1006713903963
- F.V. Sussa, S.R. Damato, M.M. Alencar, B.P. Mazzilli, P.S.C. Silva, Natural radioactivity determination in samples of *Peperomia pellucita* commonly used as a medicinal herb. J. Environ. Radioact. 116, 148–151 (2013). doi:10.1016/j.jenvrad.2012.09.012
- K. Shiraishi, K. Tagami, Y. Muramatsu, M. Yamamoto, Contributions of 18 food categories to intakes of ²³²Th and ²³⁸U in Japan. Health Phys. 78, 28–36 (2000). doi:10.1097/00004032-200001000-00006
- M.A. Misdaq, W. Bourzik, Determination of committed effective doses from annual intakes of ²³⁸U and ²³²Th from the ingestion of cereals, fruits and vegetables by using CR-39 and LR-115 II SSNTD. J. Radioanal. Nucl. Chem. **254**, 551–555 (2002). doi:10. 1023/A:1021650423883
- M.A. Misdaq, K. Outeqablit, Determination of committed effective doses to skin due to ²³⁸U, ²³²Th and ²²²Rn from the application of various Moroccan black soap (Saboun Beldi) samples by members of the general public. Radiat. Prot. Dosim. 142, 136–145 (2010). doi:10.1093/rpd/ncq275
- M.A. Misdaq, R. Touti, Annual committed effective dose from olive oil (due to ²³⁸U, ²³²Th, and ²²²Rn) estimated for members of the Moroccan public from ingestion and skin application. Health Phys. **102**, 335–345 (2012). doi:10.1097/HP.0b013e318237e597
- 9. M.A. Misdaq, H. Khajmi, F. Aitnouh, S. Berrazzouk, W. Bourzik, A new method for evaluating uranium and thorium contents in different natural material samples by calculating the CR-39 and LR-115 type II SSNTD detection efficiencies for the emitted α particles. Nucl. Instr. Meth. Phys. Res. **B171**, 350–359 (2000). doi:10.1016/S0168-583X(00)00292-5
- A.F. Hafez, M.A. Naim, Plastic nuclear track detection methods for estimation of thorium and uranium ratio in thick natural materials. Nucl. Instr. Meth. Phys. Res. B69, 373–381 (1992). doi:10.1016/0168-583X(92)96033-U
- M.A. Misdaq, A. Bakhchi, A. Ktata, A. Merzouki, N. Youbi, Determination of uranium and thorium contents inside different materials using track detectors and mean critical angles. Appl. Radiat. Isot. 51, 209–215 (1999). doi:10.1016/S0969-8043(98)00190-0
- 12. Biersack J P, Ziegler J F. IBM Research, TRIM, Version 98, 1998
- International Commission on Radiological Protection. Recommendations of the International Commission on Radiological Protection, vol. 103, (ICRP Publication, Elsevier, 2007)
- International Commission on Radiological Protection. Recommendations of the International Commission on Radiological Protection, vol. 116, (ICRP Publication, Elsevier, 2010)