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Abstract  As a third generation light source, Shanghai Synchrotron Radiation Facility (SSRF) has up to 140 beam 

position monitors (BPM) installed to monitor the beam dynamics on its storage ring. Once the operation mode is 

chosen, the betatron functions are determined. Since the sinusoidal betatron oscillation is the dominant component of 

the transverse motion, these BPMs can be used to measure the motion to get the betatron functions. Three methods are 

compared to calculate the phase advance among the BPMs in this paper, aiming to find one or more feasible ways to 

check the beam optics in SSRF. Some experiments have also been made to verify the practicality of the phase 

information. 
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1 Introduction 

Stability is the most important factor for particle 
accelerators, especially for Shanghai Synchrotron 
Radiation Facility (SSRF), a third generation light 
source. One way to check the beam optics and find 
errors is to measure the betatron phase advances 
around the storage ring and compare them to the 
lattice model[1]. Here, the 140 synchronized BPMs on 
the storage ring here in SSRF are ready for the beam 
stability test[2]

The betatron oscillation of a single particle can 
be expressed as

, but it is still necessary to pick one 
major method to calculate the phases at those 
positions. 

[3]
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where β(z) is the so-called β-function. ε and φ0 are 
integration constants. φ0 represents the initial phase 
and stays all the same around the ring. φ(z), the phase 
at z, may vary in different initial states, thus only the 
phase advances between probes are concerned. 
 

      Once the proper operating conditions are 
established, the β-function is decided. The phase 
function can be written as the following
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      So the phase will be shifted by a fixed angle 
after each cycle despite the details of the lattice. The 
phase advance between two probes is unrelated to any 
parameters except for the β-function: 
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The data series of the ith

( ) ( ) ( )ccos cos 2πi i i i iu n A nT A nω ϕ ν ϕ= + = +

 BPM have the following form: 

(2) 

This means that the series is a sinusoidal signal. 
Fig.1 is a typical waveform that a BPM can get after 
the beam is excited by white noise in the frequency 
domain. Plenty of classic methods are available to 
extract the phase information due to its narrowband 
characteristics. The commonly used tools which are 
suitable for the machine are discrete Fourier analysis[4], 
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correlation analysis[5] and singular value decomposi-
tion (SVD). An experiment addressing the phase 
advance measurement algorithms has been performed 
for this reason. 

 

Fig.1  Typical turn-by-turn data in frequency domain of 
transverse motion excited by white noise. 

2 Experimental 

2.1 Discrete Fourier analysis 

Fourier analysis is widely adopted to process 
monochrome data like Eq.(2). These data could be 
decomposed into its constituent frequencies. The 
output frequency spectrum contains the amplitudes as 
well as the phase information of the signal. The phase 
advance could be obtained by simply subtracting one 
phase from another. 

The discrete Fourier transform (DFT) only 
approximates the continuous Fourier transform. Since 
there are some resonance conditions[3] to be avoided to 
prevent the closed orbit from divergence, it is better 
that the fractional tune usually does not match the 
revolution frequency. In that case, the waveforms 
fetched from the BPMs are band-limited periodic and 
are truncated to consist of other than an integer 
multiple of the characteristic period, so that leakage 
and distortion are inevitable. Weighting function is 
chosen to reduce leakage and phase adjustment is 
applied to calculate the “exact” phase[6]

2.2 Correlation analysis 

.  

The autocorrelation functions and the cross-correlation 
function of two sinusoidal signals 

( ) ( )0cosf t A t jω= +  and ( ) ( )0cosg t B t j jω= + +  

converge at Eqs.(3−5). 
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The following relationship can be easily 
obtained from the above equations as long as enough 
data points are available 

cos fg

ff gg

R
R R

ϕ ≅  

There is no information about whether the 
phase difference between these two signals is a phase 
advance or a phase retard without more calculations. 
The locations of the BPMs are well designed so 
fortunately the β-function between any adjacent BPMs 
will not cause the phase advance greater than π in 
Eq.(1) and no more autocorrelation functions and 
cross-correlation functions with time delay are needed 
in this case. 

2.3 SVD 

Model-Independent Analysis (MIA) is a tool that 
applies Principal Component Analysis (PCA) to the 
particle accelerator physics. The MIA relies on a 
statistical analysis of the BPM data matrix and studies 
the beam dynamics without knowing the machine 
model. The PCA uses SVD to convert the BPM data 
matrix B into a product of three matrices[7]. 
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where 

( )1 2diag , , , kS λ λ λ= 

 

is the singular matrix. 
When the beam is excited and the betatron 

oscillation is the dominant term of the transverse 
motion, the first two columns of U, S and V denote the 
two orthogonal bases of this betatron oscillation. The 
matrix therefore approximately equals to the sum of 
these two principal components[7]

††
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The following formula[7] could be derived 
directly from the above expressions of v1 and v 2

2 2
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v
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λ

=
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And the sign of v1 and v 2

3 Beam experiment 

 will be used to determine 
which quadrant the phase falls in. 

An experiment was performed on September, 2011. 
The beam energy was 3.5 GeV, the current was about 
150 mA, the fractional tune is around 0.22 and a 
normal model was chosen to be run during the 
experiment. The beam was excited by white noise and 
2048 readings were immediately taken from each 
BPM. The excitation was repeated by 150 times so 
there were 150 groups of BPM matrices available for 
the calculation of the phase advances. 

3.1 Goodness of coincidence 

There are two dimensions of the transverse betatron 
oscillation: the horizontal and the vertical. Only the 

horizontal results will be listed in this article for the 
sake of brevity. The three methods mentioned above 
were used to process these data and the results of the 
phase advances are shown in Fig.2. The solid line with 
asterisks is the theoretical model. The dashed line with 
diamonds is the result of MIA. The dots are the result 
of the DFT and the five-pointed stars are the results of 
the correlation analysis. A rough glance gives the 
impression that the correlation analysis fits the model 
best. 

 
Fig.2  Resulting phase advances given by the three methods 
and a comparison between them and the machine model. 

      The real lattice may appear different from the 
designed one due to quadrupole gradient errors, beam 
energy offset and even wake-field, so the goodness of 
coincidence between the results and the model is not 
the criterion used to choose the most suitable 
algorithm in the machine. If the results of the phase 
advance between two adjacent BPMs are too far away 
from the model for all the three methods, one of the 
BPMs can be considered to be a problematic candidate. 
Fig.2 shows that we do not have high degree of trust 
and confidence in the BPMs that correspond to the 
circles on the horizontal axis which can be muted in 
the future but were not excluded in this experiment 
and will take part in the computations. 

3.2 Repeatability 

Figure 3 shows the repeatability performances of the 
three methods using all 150 groups with various data 
points in different line types as listed in the legend. 
Basically the performance of each method improves 
significantly when more samples are included. The 
correlation analysis is clearly more stable than the 
others while DFT gives the largest standard deviations. 
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Fig.3  Standard deviations of different methods and different 
samples. 

      Distortion and leakage in DFT arise because of 
the requirement for sampling and truncation and the 
low frequency resolution makes it even worse. Any 
slight noise in the BPM readings can change the phase 
significantly. That is why the output has such large 
deviations when only a few points are available. The 
tune was drifting as the machine kept running, so the 
frequency band was widened as the data points grew. 
Since the single phase of the frequency with the 
largest amplitude is usually computed, it becomes 
unreliable when the number of points reaches some 
value and some other frequencies are mixed in the 
signal. This experiment shows that DFT could give 
results with the standard deviation close to 0.59° when 
1024 samples were used and extra data would be 
redundant due to the signal to noise ratio. 
      The correlation analysis acts just perfectly. It 
gets better when more points are included because the 
more data are used, the smaller the oscillation term 
becomes, and thus the more stable it can be. The 
standard deviation reaches 0.47° when 2048 samples 
were used. 

3.3 More study in MIA 

Figure 4 lists the standard deviations of the phase 
advance between two specified BPMs when different 
numbers of BPMs are included in MIA. MIA extracts the 
shared modes of all the BPMs, therefore, not only the 
number of points of each BPM will affect its 
performance, but also the number of BPMs included in 
the SVD process of the data matrix may have some 
contribution. 

 

Fig.4  Standard deviations of different number of BPMs used 
in MIA. 

The MIA can detect the correlationship 
between all the BPMs involved in its computing, so 
the betatron motion will be found more easily if the 
number of BPMs increases and the mode can be 
expressed in a more precise way if the number of 
points increases. The MIA is considered to be more 
practical if sufficient BPMs and enough data are 
provided. Otherwise, there is a chance that wrong 
modes could be extracted by mistake which enlarges 
the standard deviations (see the strange bump at the 
front part of the curves in Figs.3 and 4). The resolution 
of the system reaches 0.55° when 512 samples were 
taken, and the phase advance accuracy could be less 
than 0.41° when 18 or more BPMs were used. 

Nevertheless, it is worth mentioning that the 
actual readings of the BPMs are not perfect sampled 
sinusoidal functions so a lot of optimizations were 
applied during the DFT and the correlation analysis. 
There were neither pre-process nor post-process in 
MIA, even without a mechanism to prevent the wrong 
modes to be extracted. The phase accuracy of an 
experiment could achieve 0.3° in APS with up to 300 
BPMs[8]. Besides, MIA is not just a phase advance 
calculator and some other parameters such as 
β-functions can be calculated at the same time (see 
Fig.5). Although it did not give the most stable results, 
it still has the potential to get enhanced after some 
deeper research. 
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Fig.5  A comparison between horizontal β-function measured 
by MIA and that given as the model. 

4 Applications 

Another beam experiment was done at March, 2010 
while a set of quadrupoles named Q1 was altered from 
120% of its design strength to 150% of that with the 
beam current of 35 mA in a different lattice model. 
The initial phases of BPMs in cell 1 were recorded. 
Fig.6 shows a typical relation between the phase 
advance between 2 BPMs and the Q1 setting. Given 
that the standard deviation of our measurements is less 
than 0.6° when reasonable samples are taken. This 
system is capable of telling the difference of the lattice 
when the degree of variation of the quadrupoles has 
reached 5% if the positions where phase advances are 
to be monitored are carefully chosen based on the 
response matrix. 

 

Fig.6  Relation between Q1 setting and the corresponding 
phase advance between BPM No.2 and BPM No.3. 

5 Conclusion 

Phase advance measurement is one of the new ways to 
monitor the stability of the beam optics in modern 
storage rings. Beam experiments in SSRF have shown 
the potential of calibrating quadrupoles’ offsets and 
locating the positions of malfunctioned units by using 
the phase advance techniques, thus the precision of the 
phase measurement is mostly important. 
      Three popular methods: DFT, correlation 
analysis and MIA were used to calculate the phase 
advances between BPMs using the excited 
turn-by-turn beam data fetched by 140 BPMs on the 
storage ring in SSRF. It turns out that the correlation 
analysis could give the results with the least standard 
deviations so far, whether the number of points is 
sufficient or not, after some comparisons. Given 
enough data, the correlation function tool can generate 
the results with the standard deviation less than 0.47°. 
      It seems that the results from MIA are close to 
those of correlation analysis. MIA is worth further 
study and optimization to see if it can also be used in 
SSRF. 
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