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Abstract Traditional Fourier transform infrared (FTIR)

spectroscopy has been recognized as a valuable method to

characterize and classify kinds of microorganisms. In this

study, combined with multivariate statistical analysis,

synchrotron radiation-based FTIR (SR-FTIR) microspec-

troscopy was applied to identify and discriminate ten

foodborne bacterial strains. Our results show that the whole

spectra (3000–900 cm-1) and three subdivided spectral

regions (3000–2800, 1800–1500 and 1200–900 cm-1,

representing lipids, proteins and polysaccharides, respec-

tively) can be used to type bacteria. Either the whole

spectra or the three subdivided spectra are good for dis-

criminating the bacteria at levels of species and subspecies,

but the whole spectra should be given preference at the

genus level. The findings demonstrate that SR-FTIR

microspectroscopy is a powerful tool to identify and clas-

sify foodborne pathogenic bacteria at the genus, species

and subspecies level.
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1 Introduction

Fast discrimination and accurate identification of food-

borne pathogens are essential for the management of food

safety and quality, including tracing contaminants and

troubleshooting problems such as spoilage [1]. Bacterial

species have been identified by culturing methods, relying

on culturing processes coupled to morphological, physio-

logical and biochemical characterization; and/or by DNA-

based methods, such as real-time PCR and DNA microar-

rays. All these conventional methods are labor-intensive

and time-consuming [3, 4]. In order to control and mini-

mize the microbiological hazard of food products, efficient

techniques for bacteria identification in a rapid and

unequivocal way have been continuously pursued.

As a sensitive, rapid and noninvasive technique, Fourier

transform infrared (FTIR) spectroscopy has been widely

applied to typing and classification of bacteria since it can

identify functional groups in bacterial specimen based on

their vibration modes at different infrared wave numbers
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[2, 3]. When an infrared light passes through a sample,

certain wavelengths absorbed lead to stretching, contract-

ing or bending vibrations of functional groups, thus an IR

spectrum is produced which contains a number of

absorption bands [4]. In the mid-infrared region (4000–400

wavenumber in cm-1), three main spectral regions

(Fig. S1) are commonly used [5, 6]. The wavenumber

range 3000–2800 cm-1 (the ‘‘lipid region’’) reflects the

information most of membrane lipids and some side chains

of amino acids, since this region is dominated by C–H

symmetrical or asymmetrical stretching vibrations of

-CH3 and[CH2 functional groups [3, 7, 8]. The region of

1800–1500 cm-1 (the ‘‘protein region’’) is dominated by

proteins, with two intensive bands mainly representing

C=O stretching vibration of amide I and N–H bending or

C–N stretching vibrations of amide II band of proteins

[9, 10]. The wavenumber range 1200–900 cm-1 (the

‘‘polysaccharide region’’) is dominated by polysaccharides

in the cell wall and phosphate-containing compounds like

nucleic acids, as stretching vibrations of C–O–C, C–O–P

and PO2
- groups [3, 4, 11]. Thus, each type of bacteria

would possess a fingerprint infrared absorption spectrum

according to their specific chemical compositions [12].

During recent years, traditional FTIR spectroscopy has

been widely reported for identification, discrimination and

classification of bacteria [2, 7, 8, 13, 14], but in most

studies, the whole spectra rather than spectra of subdivided

wavenumber ranges were used.

Compared with conventional FTIR spectroscopy with

*75 lm spatial resolution, synchrotron radiation-based

FTIR (SR-FTIR) spectroscopy is of higher signal-to-noise

(by 100- to 1000-fold), higher collimation and luminance

which can reach diffraction limit with 10 lm or better

[15–19], so that it even probes the heterogeneities in the

bacterial population at single cell level. In this study, SR-

FTIR microspectroscopy coupled with multivariate

regression analysis method was applied to characterize

bacteria. Both whole spectra (3000–900 cm-1) and subdi-

vided spectra of lipid, protein and polysaccharide regions

were chosen to discriminate bacteria at levels of genus,

species and subspecies.

2 Materials and methods

2.1 Bacterial strains

Ten bacterial strains (Table 1) were used including

Staphylococcus epidermidis, Listeria innocua, Salmonella

spp., Shigella dysenteriae, Vibrio spp. Most of the bacteria

were foodborne pathogens except S. epidermidis.

2.2 Bacteria culture and collection

Bacterial strains were cultured in corresponding liquid

culture medium overnight. For each species, 1 mL sus-

pension (approximately 5 9 107 CFU/mL) was collected

after centrifugation (8000 rpm, 5 min), the pellet was

washed three times using Milli-Q water (18.2 LX cm-1,

Millipore, Bedford, MA, USA) and re-suspended in 50 lL

absolute ethyl alcohol.

2.3 Synchrotron FTIR microspectroscopy

SR-FTIR microspectroscopy experiments were per-

formed at the beamline BL01B1 of Shanghai Synchrotron

Radiation Facility (SSRF). Before measurement, one drop

of suspension was deposited on the BaF2 window and air-

dried at room temperature [7]. The absorption spectra were

collected by Nicolet 6700 FTIR spectrometer with Con-

tinuum XL FTIR microscope equipped with 329 Sch-

warzschild objective (N.A. = 0.65). Transmission mode

Table 1 Strains used in this

study
Genus Strain Culture medium and temperature (�C)

Staphylococcus S. epidermidis (CGMCC 1.4260) Nutrient agar, 37

Listeria L. innocua (CICC 10417) Brain-heart agar, 37

Salmonella S. enteritidis (CICC 21482) Nutrient agar, 37

S. typhimurium (CICC 10420) Nutrient agar, 37

S. paratyphi (CICC 10437) Nutrient agar, 37

Shigella S. dysenteriae (CGMCC 1.1869) Nutrient agar, 37

Yersinia Y. enterocolitica (CICC 21669) Nutrient agar, 25

Vibrio V. vulnificus (CICC 10383) Marine agar 2216, 30

V. parahaemolyticus (CGMCC 1.1997) Marine agar 2216, 30

V. fluvialis (CGMCC 1.1609) Marine agar 2216, 30

cFig. 1 FTIR spectra (left) and PCA results (right) of six genus

bacteria (L. innocua, Salmonella paratyphi, Shigella dysenteriae, Y.

enterocolitica, V. parahaemolyticus and Staphylococcus epidermidis)

of whole spectral region (a), lipid (b), protein (c) and polysaccharide

(d) regions
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was chosen for sample testing, aperture was set

20 lm 9 20 lm. Each specimen was measured at 50 dif-

ferent sites (n = 50) within the wavenumber

4000–650 cm-1, with 64 co-added scans at 4 cm-1 reso-

lution. Spectra were collected using OMNIC 9.2 (Thermo

Fisher Scientific) followed by baseline correction, 15-point

smoothing and normalization [5, 8]. Second derivative

spectra were calculated using Savitsky–Golay method to

improve resolution and minimize baseline variability.

2.4 Data analysis

Principal component analysis (PCA) makes it easy to

distinguish the spectral differences by a data reduction

method [3]. After essential information is extracted from

the complex spectral data sets, and several uncorrelated

variables (principal components, PCs) are listed in a

descending order [20], the first two PCs are chosen and

converted into a score plot. In our study, PCA was carried

out on the second derivative spectra of 10 bacterial strains

using MATLAB 8.3. The scatter plots were drawn using

Origin 9.3.

3 Results and discussion

FTIR absorption spectra of six genus bacteria (L. inno-

cua, Salmonella paratyphi, S. dysenteriae, Y. enterocolit-

ica, V. parahaemolyticus and S. epidermidis) were acquired

and analyzed. The average spectra of the 3000–2800 and

1800–900 cm-1 regions are shown in Fig. 1a. The spectral

bands were too complex to distinguish. To find out the

exact positions of all peaks and shoulder peaks in spectra,

second derivative spectra of the six bacteria were calcu-

lated and PCA was performed. The results showed that

PC1 and PC2 totally expressed 61.9% of the variation, so

they were chosen to draw score plots. Scatter plots indi-

cated that the six bacteria could be distinguished using the

whole spectra, and therefore SR-FTIR microspectroscopy

can identify and differentiate bacteria at the genus level.

To explore whether subdivided spectral regions can be

used to differentiate bacteria, spectral peaks were labeled

and PCA analysis was done. In the lipid region [21], most

adsorption bands for the bacteria differed from each other,

except a same absorption band at 2875 cm-1 (Fig. 1b).

PCA results proved that the bacteria could be

Fig. 2 PCA results of three different bacterial species from Vibrio (V. parahaemolyticus, V. fluvialis and V. vulnificus) of whole spectral region

(a), lipid (b), protein (c) and polysaccharide (d) regions
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discriminated, though it was not very good between S.

dysenteriae and V. parahaemolyticus. In the protein region

[3], L. innocua, S. paratyphi and S. epidermidis had similar

absorption spectra (Fig. 1c) and PCA results indicated that

the protein spectra region could not be used to differentiate

them. In the polysaccharide region (Fig. 1d), though the

spectra had higher specificity, the PCA results could dis-

criminate the bacteria except S. paratyphi and Y.

enterocolitica.

Therefore, whole spectra were better than three subdi-

vided spectral regions to differentiate the bacteria at genus

level.

FTIR spectra of the same bacterial species of V. para-

haemolyticus, V. fluvialis and V. vulnificus were analyzed,

too. The whole spectra and three subdivided spectra with

their absorption peaks are shown in Fig. S2. The PCA

results done with whole wavenumber range, and the lipid,

protein and polysaccharide regions, are shown in Fig. 2.

The results show that each bacteria had specific absorption

bands. Score plots proved that the three bacterial species

were noticeably segregated with distinct clustering using

either whole spectra or spectra of three spectral regions,

indicating that SR-FTIR microspectroscopy is a sensitive

technique to detect and discriminate subtle differences of

chemical components between bacterial species from the

same genus, and whole spectra or lipid, protein and

polysaccharide regions can be used to discriminate bacteria

at species level.

We further checked whether SR-FTIR microspectroscopy

was sensitive enough to discriminate bacteria at subspecies

level, with three bacterial strains of Salmonella enterica sub

species (S. enteritidis, S. typhimurium and S. paratyphi). As

shown in Fig. S3, the whole spectra and even three subdi-

vided regions of the three bacterial strains can be discrimi-

nated with disparate absorption bands. Similarly, PCA

analysis of whole spectra and the three subdivided regions

(Fig. 3) showed that the bacteria can be well differentiated.

These indicate that SR-FTIR microspectroscopy can dis-

criminate different components of lipids, proteins and

polysaccharides among the bacteria subspecies using either

whole spectra or subdivided spectra.

4 Conclusion

Our work first demonstrated that SR-FTIR microspec-

troscopy was powerful and sensitive enough to discrimi-

nate bacteria at the genus, species and subspecies level.

Fig. 3 PCA results of three different bacterial strains from Salmonella enterica subsp. (S. enteritidis, S. typhimurium and S. paratyphi) of whole

spectral region (a), lipid (b), protein (c) and polysaccharide (d) regions
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More importantly, we found that either whole spectra or

spectra of three subdivided wavenumber regions can be

used to discriminate bacteria at species and subspecies

level, although whole spectra are better when used at the

genus level.

Compared with traditional FTIR spectroscopy, SR-FTIR

microspectroscopy is advantageous for bacterial identifi-

cation. For example, sample preparation is simple and only

several microliter bacterial suspension is needed; one

sample can be measured within minutes; little differences

in chemical compositions within a population of closely

related organisms can be detected. It is believed that, due to

its high sensitivity, fast speed and in-invasive measure-

ments, SR-FTIR microspectroscopy will find the growing

demand and proper application in the microbiology field.
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