Study on radiolabeling of 1,2,3-triazole analogs with *fac*-[¹⁸⁸Re(CO)₃(H₂O)₃]⁺ *via* click chemistry

WANG Cheng¹ YIN Jilin^{1,*} ZHOU Wei² ZHANG Lan² ZHOU Zheng¹

¹PET/CT center, General Hospital of Guangzhou Military Command, Guangzhou 510010, China

²Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jiading Campus, Shanghai 201800, China

Abstract Click chemistry was used to study on radiolabeling of 1,2,3-triazole analogs with fac-[¹⁸⁸Re(CO)₃(H₂O)₃]⁺. CuSO₄/L-sodium ascorbate was chosen as the catalyst system, three terminal alkynes were conjugated with two different azides respectively, and then the new prepared fac-[¹⁸⁸Re(CO)₃(H₂O)₃]⁺ was coordinated to the six triazoles. The results showed that the radiochemical yields (RCY) of the conjugation of fac-[¹⁸⁸Re(CO)₃]⁺ with six triazoles were over 90%, and the triazoles showed high stability in phosphate-buffered saline and new-born calf serum. The preliminary biological evaluation results showed that the new ¹⁸⁸Re-labeling method *via* click chemistry could have general application in labeling bioactive molecules in high radiochemical yield and high specific activity for further SPECT research.

Key words Tricarbonyl Rhenium-188, Stability, Triazole analogs, Radiotherapy, Click chemistry

1 Introduction

The "click chemistry" could be carried out in high vields under mild and tolerable conditions of neutral pH and room temperature in aqueous media within a reasonable reaction time^[1,2]. Due to these favorable aspects with click chemistry, the use of this strategy for making ¹⁸F-labeled biomolecules has been reported ^[3-10]. And now it has been a mature method for the labeling of ¹⁸F^[11,12]. Recently, the organometallic precursor fac-[¹⁸⁸Re(CO)₃(H₂O)₃]⁺ was shown to be an ideal candidate agent for labeling biomolecules^[13] because of the high stability of the three carbonyl groups and the substitution liability of the three water molecules^[14,15]. And for *fac*-[¹⁸⁸Re (CO)₃]⁺ labeling, many research groups have reported the use of "click to chelate" for compounds labeling or SPECT imaging^[16-19].

Our group focuses on the preparation of the organometallic precursor fac-[¹⁸⁸Re(CO)₃(H₂O)₃]^{+[20]} and the labeling method of this organometallic precursor^[21]. We have labeled an RGD-containing

peptide with fac-[¹⁸⁸Re(CO)₃(H₂O)₃]^{+[22]} and obtained encouraged results. In this paper six triazoles were obtained *via* click chemistry, and the excellent radiochemical yields and stability in phosphate-buffered saline and new-born calf serum have been shown to be an extraordinarily ideal method for fac-[¹⁸⁸Re (CO)₃]⁺ labeling.

2 Materials and methods

2.1 General

Pyridine-2-methylamine, Bis(pyridin-2-ylmethyl)amine and L-Propargylglycine were purchased from Aldrich Co., Ltd; c(RGDfk)-N₃ was synthesized by China Tech Peptide Co., Ltd. ¹⁸⁸Re-perrhenate was eluted from ¹⁸⁸W/¹⁸⁸Re generator (Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China) using 0.9% saline; Plus QMA Sep-Pak cartridges were manufactured by Waters Corporation (Massachusetts, USA). All reagents were analytical grade and purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai). γ counter

Supported by National Natural Science Foundation of China (No.10875163) and Natural Science Foundation of Guangdong Province (Nos.2009B030108036 and S2012010010685)

^{*} Corresponding author. *E-mail address:* yinjilinpet_ct@163.com Received date: 2013-03-28

⁰³⁰³⁰²⁻¹

(SN-697, Shanghai Rihuan Photoelectronic Instrument Co., Ltd., Shanghai, China).

Plus QMA Sep-Pak cartridges were produced by Waters Corporation (Ma, USA); A Dionex P680 pump equipped a PDA-100 ultraviolet detector and a radiometric detector system with a Macherey-Nagel C-18 reversed phase column (5 μ m, 150×4.6 mm) were used to perform HPLC; (HPLC method: the flow rate was set at 1 mL/min, with the mobile phase starting from 95% B (0.1% trifluoroacetic acid in water) and 5% A (0.1% trifluoroacetic acid in acetonitrile) to 5% B and 95% A at 30 min. Thin layer chromatography (TLC) analysis was performed using silica gel plates (silica gel 60 GF254, mobile phase: 99% CH₃OH and 1% concentrated HCl) on a Bioscan system AR-2000 with Winscan software of Version 3.09 (Beijing, China).

2.2 Preparation of fac-[¹⁸⁸Re(CO)₃(H₂O)₃]⁺

As described in the literature^[20], 5 mg BH₃·NH₃ and 5 mg K₂[H₃BCO₂] were placed in a 10 mL glass vial, to which the mixture of ¹⁸⁸Re-perrhenate eluate and concentrated H₃PO₄, flushed with nitrogen for 20 min were injected and then the glass vial was incubated at 75°C for 15 min. The reaction was ended by cooling in ice bath. In addition, the QMA Sep-Pak cartridge was used to purify the product. The chelating efficiency was determined by TLC.

2.3 Radiolabeling of small organic molecules

100 μ L of triazole analog solution (dissolved in methanol, 0.01 mol/L) was mixed with 900 μ L of freshly prepared ¹⁸⁸Re tricarbonyl complex solution (37 MBq/mL) and incubated at 75°C for 1 hour. The radiolabeling efficiency was determined by HPLC.

2.4 Radiolabeling of c(RGDfk)-N₃ peptide

100 μ L of c(RGDfk)-N₃ peptide (1 mg) solution was mixed with 900 μ L of freshly prepared ¹⁸⁸Re tricarbonyl complex (37 MBq/mL) and incubated at 75 °C for 30 min. The radiolabeling efficiency was determined by HPLC.

2.5 Octanol-water partition coefficient

Approximately 111 kBq of conjugation compounds in 500 μ L of PBS (pH=7.4) were added to 500 μ L of

octanol in an Eppendorf microcentrifuge tube. The mixture was vigorously vortexed for 1 min at room temperature and centrifuged at 12 500 rpm for 5 min. After centrifugation, 200 μ L aliquots of both layers were measured using a γ -counter. The experiment was carried out in triplicate. And the octanol–water partition coefficient (log*P*) was obtained by the following formula:

$$\log P = \log \left(\frac{\text{counts in octanol}}{\text{counts in water}} \right)$$

2.6 Stability in vitro

¹⁸⁸Re-labeled triazole analogs were mixed with phosphate-buffered saline or new-born calf serum for the stability test. The admixtures were incubated at 37° C for 24 hours. Stability was determined at various time points (0, 1, 4, 8 and 24 h) by HPLC.

Fig.1 The chemical structure of c(RGDfk)-N₃ peptide.

3 Results and discussion

3.1 Radiolabeling of c(RGDfk)-N₃ peptide and benzyl azides

The chemical structure of $c(RGDfk)-N_3$ peptide was shown in Fig.1. The radiolabeled efficiencies of the labeled compounds were 93%, 94%, 95%, 95%, 91% and 92% respectively and the retention times (t_R) were 9 min, 19 min, 8 min, 10 min, 14 min and 10 min respectively according to the radio-high-performance liquid chromatography (Fig.2). The shoulder peaks on the main peaks of compound 1 and compound 5 to be exported were determined and the optical isomers were produced.

3.2 Octanol-water partition coefficient

The octanol-water partition coefficients (log P) for the six labeled compounds were illustrated in Table 1. The data indicate that the tracers containing $c(RGDfk)-N_3$ peptide are slightly more hydrophilic than containing benzyl azides.

Fig.2 Radio-high-performance liquid chromatography of six triazole compounds, the aboves were the radioactive data, and the belows were the ultraviolet spectrum data of standards. CPS: count per second.

Fig.3 Stability of the ¹⁸⁸Re-labeled compounds in the presence of phosphate-buffered saline (\mathbf{a}) and newborn calf serum (\mathbf{b}).

3.3 Stability in vitro

The stability of the ¹⁸⁸Re-labeled compounds at 37° C in the presence of phosphate-buffered saline or newborn calf serum was monitored by radio-HPLC. After 24 hours incubation, the radiochemical purity was more than 90% in both selected conditions, which was shown in Fig.3.

 Table 1
 Octanol-water partition coefficients of the labeled compounds

Entries	logP
1	0.84±0.02
2	-2.35±0.03
3	0.75±0.04
4	-2.06±0.02
5	0.97±0.05
6	-1.74±0.04

4 Conclusion

Six ¹⁸⁸Re-labeled compounds were successfully prepared using a simple click chemistry method. The main role of the click chemistry was to synthesis the bifunctional chelating agents containing triazole rings.

The use of click chemistry in compounds 1, 2, 3 and 4 was "conjugation-chelating" and in compounds 5 and 6 was just "conjugation". The well chemical yields and ideal stability *in vitro* of ¹⁸⁸Re-labeled c(RGDfk)-N₃ peptide compounds forebode the further *in vivo* research even the tumor SPECT imaging and radiotherapy.

References

- Kolb H C, Finn M, Sharpless K B. Angew Chem Int Ed, 2001, 40: 2004–2021.
- 2 Rostovtsev V V, Green L G, Fokin V V, *et al.* Angew Chem Int Ed, 2002, **41:** 2596–2599.
- 3 Glaser M, Arstad E, Bioconjugate Chem, 2007, 18: 989–993.

- 4 Ramenda T, Bergmann R, Wuest F, Lett Drug Des Discov, 2007, **4:** 279–285.
- 5 Li Z B, Wu Z, Chen K, *et al.* Bioconjugate Chem, 2007, 18: 1987–1994.
- 6 Qu W C, Kung M P, Hou C, *et al.* J Med Chem, 2007, **50**: 3380–3387.
- 7 Sirion U, Kim H J, Lee J H, *et al.* Tetrahedron Lett, 2007,
 48: 3953–3957.
- 8 Hausner S H, Marik J, Gagnon M K J, *et al.* J Med Chem, 2008, **51:** 5901–5904.
- Smith G, Glaser M, Perumal M, *et al.* J Med Chem, 2008,
 51: 8057–8067.
- 10 Kim D H, Choe Y S, Choi J Y, *et al.* Bioconjugate Chem, 2009, **20:** 1139–1145.
- 11 Gill H S, Marik J. Nat Protoc, 2011, 6: 1718–1725.
- Heal W P, Wright M H, Thinon E, *et al.* Nat Protoc, 2012, 7: 105–117.
- Schibli R, Schwarzbach R, Alberto R, *et al.* Bioconjugate Chem, 2002, **13**: 750–756.
- 14 Alberto R, Schibli R, Waibel R, *et al.* Coord Chem Res, 1999, **190**: 901–919.
- Schibli R, Schubiger A P, Eur J Nucl Med Mol Imag, 2002,
 29: 1529–1542.
- Mindt T L, Struthers H, Brans L, et al. J Am Chem Soc, 2006, 128: 15096–15097.
- 17 Mindt T L, Muller C, Melis M, *et al.* Bioconjugate Chem, 2008, **19:** 1689–1695.
- 18 Struthers H, Spingler B, Mindt T L, *et al.* Chem Eur J, 2008, **14:** 6173–6183.
- Mindt T L, Muller C, Stuker F, *et al.* Bioconjugate Chem, 2009, **20:** 1940–1949.
- Wang C, Zhou W, Yu J, *et al.* Nucl Med Commun, 2012,
 33: 84–89.
- 21 Wang C, Wang N, Zhou W, et al. Prog Chem, 2010, 22: 1591–1602.
- 22 Ma Y, Yu J, Han Y, *et al.* Nucl Med Commun, 2010, **31:** 147–151.