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Abstract  This paper reports my recent study[1] on the shear viscosity of neutron-rich nuclear matter from a 

relaxation time approach. An isospin- and momentum-dependent interaction is used in the study. Dependence of 

density, temperature, and isospin asymmetry of nuclear matter on its shear viscosity have been discussed. Similar to 

the symmetry energy, the symmetry shear viscosity is defined and its density and temperature dependence are studied. 
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1 Introduction 

One of the major problems in nuclear physics is to 

understand the properties of nuclear matter under 

extreme conditions. This is related to the basic 

knowledge of the in-medium nucleon-nucleon (NN) 

interaction which in the present stage can still hardly 

be obtained from the ab initio theory of the strong 

interaction, i.e., Quantum chromodynamics. Our 

knowledge on the in-medium NN interaction today is 

mainly developed along two lines. In the first line, one 

starts from the bare NN interaction, which has been 

fitted very well from NN scattering data, together with 

phenomenological three-body interactions, so that the 

in-medium NN interaction and the properties of 

nuclear matter can be obtained through many-body 

theories. In the second line, the starting point is an 

effective in-medium NN interaction or Lagrangian, 

with the parameters fitted to the empirical nuclear 

matter properties obtained usually through mean-field 

approximations. 

       Ten years ago, an isospin- and 

momentum-dependent mean-field potential (hereafter 

'MDI') was constructed to study the dynamics 

(especially the isospin effects) in intermediate-energy 

heavy-ion collisions together with an 

isospin-dependent Boltzmann-Uehling-Uhlenbeck 

(IBUU) transport model[2]. In addition to the good 

description of the empirical nuclear equation of states, 

the momentum dependence of this mean-field 

potential reproduces pretty good the optical potential 

extracted by Hama S et al. from elastic proton 

scattering data[3]. The studies using this interaction 

have constrained the nuclear symmetry energy at both 

subsaturation and suprasaturation densities[4-6]. In 

addition to the dynamics of heavy-ion collisions, the 

MDI model has also been used in the study of 

thermodynamical properties of nuclear matter[7,8]. It 

was recently found that the isospin- and 

momentum-dependent potential can be derived from 

an effective interaction with a density-dependent 

two-body interaction and a Yukawa-type finite-range 

interaction using Hartree-Fock calculation[9]. The MDI 

model thus serves as a useful effective in-medium 

interaction. 

       In the past few years, the shear viscosity of 

the quark-gluon plasma (QGP) formed in relativistic 

heavy-ion collisions has attracted special attentions. 

From the study using a viscous hydrodynamical 

model[10], it was found that the strong-interacting QGP 

behaves like a nearly ideal fluid, i.e., its specific shear 

viscosity is only a little larger than the 

Kovtun-Son-Starinets boundary[11]. Up to now large 

efforts have been devoted to study the shear viscosity 

of QGP[12-15] and hadron resonance gas[16-19] formed in 

relativistic heavy-ion collisions, while there are only a 
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few studies on the shear viscosity of nuclear matter 

formed in intermediate-energy heavy-ion 

collisions[20-24]. Even few studies are related to the 

isospin effects on the shear viscosity of nuclear 

matter[25]. In this paper I will discuss my recent study[1] 

on the shear viscosity of nuclear matter using the MDI 

model mentioned above from a relaxation time 

approach, which gives an intuitive picture how the 

shear viscosity changes with the density, temperature, 

and isospin asymmetry of nuclear matter. 

2 Shear viscosity from a relaxation time 
approach 

The system concerned here is an isospin asymmetric 

nuclear matter with uniform neutron and proton 

density n  and p , respectively, and the nucleons 

are thermalized with temperature T . The flow field 

u


 is static in the z  direction and its magnitude is 

linear in the coordinate x , i.e., zu cx and 

0x yu u  . In the rest frame nucleons move with the 

flow field and follow Fermi-Dirac distribution *n  in 

the equilibrium state. In the lab frame the equilibrium 

distribution is a simple boost by the flow field 

compared with that in the rest frame, denoted as 0n . 

Due to NN collisions, the real distribution may be 

slightly away from the equilibrium distribution and is 

denoted as n , and the deviation from the equilibrium 

distribution 0n n n   is much smaller than 0n . 

       The shear force between flow layers per unit 

area by definition can be written as 

( ) .z z x

F
p mu v

A 


             (1) 

In the above, n   or p denotes the isospin degree of 

freedom, xv  is the number of nucleons moving 

between layers per unit time per unit area, and 

z zp mu  is the momentum transfer per nucleon in the 

z  direction. The nucleon velocity in the 

x direction xv can be further written as *
x xv p m , 

with *m being the effective mass. Using the momentum 

distribution 0n n n    to calculate the average and 

taking into account that the equilibrium momentum 

distribution 0n  is even in xp , Eq.(1) can be further 

written as 

 

3
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where 2d   is the spin degeneracy. 

       In the following I will calculate n  by 

linearizing the isospin-dependent BUU equation as 

follows: 
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In the above, U is the mean-field potential from the 

MDI model[2,4], T  is the transition matrix, the 

degeneracy 1/ 2d   takes the double counting of 

identical nucleon collisions into consideration, and 

1 n  is from the Pauli blocking effect. Replacing n  

with 0n  in the first-order approximation, the 

left-hand side can be expressed as  

1

1
1 1
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   (4) 

by using the properties of 0n . Keeping only the 

1( )n p  term, the right-hand side of Eq.(3) can be 

expressed as 1 1( ) / ( )n p p   , where 1( )p  is the 

relaxation time, i.e., the average time between two 

collisions for a nucleon with isospin  and 

momentum 1p , and it can be written as 

same diff
1 1 1

1 1 1
,

( ) ( ) ( )p p p    
          (5) 

where same(diff)
1( )p is the average time for a nucleon 

with momentum 1p  to collide with other nucleons of 

same (different) isospin, and they can be calculated 

respectively from 



XU Jun / Nuclear Science and Techniques 24 (2013) 050514 

050514-3 

 
 

2

2
2 2 12same 3

1

, 1 2
* *

1 2

0 0 0
2 2 1

0 0 0 0
2 2 1 2

21 1
cos cos

2( ) 2

( ) ( )

[ ( ) ( ) ( )

( ) ( ) ( ) ( )],

d p dp d d
p

d p p

d m p m p

n p n p n p

n p n p n p n p



 

 

  

   


 

 



   
 

 


 

   


 

 (6) 

 
 

2

2
2 2 12diff 3

1

, 1 2
* *

1 2

0 0 0
2 2 1

0 0 0 0
2 2 1 2

21
cos cos

( ) 2

( ) ( )

[ ( ) ( ) ( )

( ) ( ) ( ) ( )].

d p dp d d
p

d p p

d m p m p

n p n p n p

n p n p n p n p



 

 

  

   


 

 

 



 

  



 


 

   


 

  (7) 

In the above 12  is the angel between 1p


 and 2p


, 

and   is the scattering angel between the total 

momentum and the relative momentum of the final 

state. In free space the pp and np scattering cross 

sections are isotropic and they can be respectively 

parameterized as[26] 

2 4
( ) 13.73 15.04 / 8.76 / 68.67 ,pp nn v v v       (8) 

270.67 18.18 / 25.26 / 113.85 ,np v v v        (9) 

where the cross sections are in mb and v  is the 

velocity of the projectile nucleon with respect to the 

fixed target nucleon. This parametrization describes 

very well the experimental data for the beam energy 

from 10 MeV to 1 GeV[26]. It is worth to note that in 

the most probable collision energies the np scattering 

cross section is about three times the pp scattering 

cross section. In nuclear matter, the in-medium NN 

scattering cross sections are modified by the 

in-medium effective mass in the form of[5] 

2*
medium ,NN
NN NN

NN


 


 

  
 

             (10) 

where NN ( *
NN ) is the free-space (in-medium) 

reduced mass of colliding nucleons. 

       Once the relaxation time ( )p  is known, 

( )n p can be calculated from 
0

( ) ( ) .z xz p p dnu
n p p

x p dp


  





         (11) 

Using the definition  zF A u x    , the shear 

viscosity can be calculated from Eqs.(2) and (11) in 

terms of the local momentum distribution *n  as 

 

2 2 * 3

* 3
( )

2
z xp p dn d p

d p
dppm




 

 


          (12) 

by setting the magnitude of the velocity field to be 

infinitely small. Note that from Eq.(12) the shear 

viscosity is related to the local momentum distribution 

near the Fermi surface. 

3 Results and discussion 

Figure 1 displays the density, temperature, and isospin 

dependence of the relaxation time. In neutron-rich 

nuclear matter, diff
n is larger while same

n  is smaller 

compared to that in symmetric nuclear matter as a 

result of less frequent np collisions and more frequent 

nn collisions. For the similar reason, same
p  is larger 

while diff
p  is smaller compared to that in symmetric 

nuclear matter. From Eq.(5), the total relaxation time 

is determined by diff  which is always smaller than 
same  due to the larger np cross section than pp(nn) 

cross section in the most probably collision energies. 

Thus, neutrons have a larger relaxation time than 

protons in neutron-rich nuclear matter. It is seen in 

Panel (d) that the relaxation time decreases with 

increasing temperature due to more frequent collisions 

at higher temperatures. In addition, at lower 

temperatures the relaxation time peaks around the 

Fermi momentum, indicating a strong Pauli blocking 

effect for nucleons near the Fermi surface. 

 

Fig.1  (Color online) Panel (a), (b), (c): Relaxation time for 
neutrons and protons as a function of nucleon momentum in 
symmetric ( 0 ) and asymmetric ( 5.0 ) nuclear matter at 
saturation density and temperature 50T MeV; Panel (d): 
Relaxation time as a function of nucleon momentum in 
symmetric nuclear matter at different densities and 
temperatures. 
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Fig.2  (Color online) Density and temperature dependence of 
the shear viscosity ((a), (b)) and specific shear viscosity ((c), (d)) 
for symmetric ( 0 ) and asymmetric ( 5.0 ) nuclear 
matter. 

       Results of the shear viscosity   and specific 

shear viscosity s , where s  is the entropy density, 

are shown in Fig.2. The temperature dependence of the 

shear viscosity is similar to that in Ref.[20] at different 

densities, while   increases with increasing density 

especially at lower temperatures due to the strong 

Pauli blocking effect. The specific shear viscosity 

decreases with increasing temperature, and it is similar 

in both magnitude and trend to those obtained from 

BUU calculations using the Green-Kubo formula[24]. It 

is interesting to see that at higher temperatures the 

specific shear viscosity is about 5~4  times the 

lower limit from Ads/CFT calculation[11], and this is 

already close to that of QGP extracted from the study 

using a viscous hydrodynamical model[10]. At lower 

temperatures the specific viscosity increases with 

increasing density due to the Pauli blocking effect, 

while at higher temperatures the dependence on the 

density is rather weak. 

       Due to the sharper momentum distribution of 

neutrons compared to that of protons in neutron-rich 

nuclear matter, the total shear viscosity is dominated 

by neutrons which have a longer relaxation time in 

asymmetric nuclear matter compared to that in 

symmetric nuclear matter. This is confirmed in Fig.2 

that both the shear viscosity and the specific shear 

viscosity are larger in neutron-rich nuclear matter. In 

addition, it was seen[1] that both the shear viscosity and 

specific shear viscosity satisfy the parabolic 

approximation with respect to the isospin asymmetry, 

i.e., 

2
sym( , , ) ( , , 0) ( , ) ,T T T                 (13) 

2

sym

( , , ) ( , , 0) ( , ) .T T T
s s s

                   
     

 (14) 

Similar to the symmetry energy, the second-order 

coefficient can thus be defined as the symmetry shear 

viscosity or the symmetry specific shear viscosity. The 

density and temperature dependence of them are 

shown in Fig.3. It is seen that both the symmetry shear 

viscosity and symmetry specific shear viscosity 

decrease with increasing temperature. At lower 

temperatures, both of them increase with increasing 

density. At higher temperatures, the density 

dependence is rather weak. sym  and  sym
s are 

important quantities in understanding transport 

properties of neutron-rich nuclear matter, and they 

deserve further studies in the future. 

 

Fig.3  (Color online) Density and temperature dependence of 
symmetry shear viscosity ((a) and (b)) and symmetry specific 
shear viscosity ((c) and (d)). 

4 Conclusion 

Using a relaxation time approach, I studied the shear 

viscosity and specific shear viscosity of hot 

neutron-rich nuclear matter as that formed in 

intermediate-energy heavy-ion collisions by using an 

isospin- and momentum-dependent interaction. It is 

found that the specific shear viscosity decreases with 

increasing temperature, and it increases with 

increasing density at lower temperatures due to the 

strong Pauli blocking effect. Furthermore, both the 

shear viscosity and specific shear viscosity are found 

to increase with increasing isospin asymmetry of 

nuclear matter and roughly satisfy the parabolic 

approximation. The second-order coefficient in the 
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expansion of the isospin asymmetry, which is defined 

as the symmetry shear viscosity or the symmetry 

specific shear viscosity, has also been studied. 
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