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Abstract  A novel method to determine the density and temperature of a system constituted by fermions and/or 

bosons is proposed based on quantum fluctuations. For fermions system, the results in the limit where the reached 

temperature T is small and where there is no constraint for the reached temperature T compared to the Fermi energy 

f  at a given density ρ are given, respectively. Quadrupole and multiplicity fluctuation relations are derived in terms 

of /T f . We compared the two set results in the limit when T is much smaller compared to Fermi energy f  and 

they are consistent, as expected. The classical limit is also obtained for high temperatures and low densities. For 

bosons system, quadrupole and multiplicity fluctuations using Landau's theory of fluctuations near the critical point 

for a Bose-Einstein condensate (BEC) at a given density ρ are derived. As an example, we apply our approach to 

heavy ion collisions using the Constrained Molecular Dynamics model (CoMD) which includes the fermionic 

statistics. The multiplicity fluctuation quenching for fermions is found in the model and confirmed by experimental 

data. To reproduce the available experimental data better, we propose a modification of the collision term in the 

approach to include the possibility of   collisions. The relevant Bose-Einstein factor in the collision term is 

properly taken into account. This approach increases the yields of bosons relative to fermions closer to data. Boson 

fluctuations become larger than one as expected.  
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1 Introduction 

In recent years, the availability of heavy-ion 

accelerators which provide colliding nuclei from a few 

MeV/nucleon to GeV/nucleon and new performing 4π 

detectors, has fueled a field of research loosely 

referred to as Nuclear Fragmentation. The 

characteristics of the fragments produced depend on 

the beam energy and the target-projectile combinations 

can be externally controlled[1-3]. Fragmentation 

experiments could provide informations about the 

nuclear matter properties to constrain the equation of 

state (EOS)[4]. To date a method does not exist to 

determine the densities and temperatures reached 

during collisions that takes into account the genuine 

quantum nature, which has been well known in some 

other fields[5-7], of the system. Long ago, Bauer 

stressed the crucial influence of Pauli blocking in the 

momentum distributions of nucleons emitted in heavy 

ion collisions near the Fermi energy[8]. We have 

recently proposed a method based on fluctuations 

estimated from an event-by-event determination of 

fragments arising after the energetic collision[9-11]. A 

similar approach has also been applied to observe 

experimentally the quenching of multiplicity 

fluctuations in a trapped Fermi gas[12-14] and the 

enhancement of multiplicity fluctuations in a trapped 

Boson gas[15]. We go beyond the method in 

Refs.[12-15] by including quadrupole fluctuations as 

well to have a direct measurement of densities and 

temperatures for subatomic systems where it is 

difficult to obtain such informations in a direct way. 

We apply the proposed method to microscopic CoMD 

approach[16-22] which includes fermionic statistics. The 
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resulting energy densities and temperatures calculated 

using protons and neutrons display a rapid increase 

around 3 MeV temperature which is an indication of a 

first-order phase transition. This result is confirmed by 

the rapid increase of the entropy per unit volume in the 

same temperature region. 

Recent experimental data on low density 

clustering in nuclear collisions and a comparison to 

microscopic quantum statistical models suggested the 

possibility that in order to reproduce the data, a Bose 

condensate is needed[23,24]. We know that light nuclei 

display an α-cluster structure which could be 

exemplified by the so-called ‘Hoyle’ state in 12C i.e. 

the first excited state of such a nucleus which decays 

into 3α’s[25]. The fact that the ground state of nuclei 

could be made of α clusters could justify their copious 

production in heavy ion collisions near the Fermi 

energy. Preliminary experimental results on 40Ca+40Ca 

performed at the Cyclotron Institute at Texas A&M 

University show that events with large multiplicity of 

 -like (i.e. 12C, 16O, etc.) or d-like (i.e. 6Li, 10B, etc.) 

fragments are found[26]. At the same time these effects 

raise the natural question whether   clustering and 

production could be a signature of a BEC[27-29]. In 

fragmentation reactions, CoMD predicts large yields 

of α clusters, but the experimental yield is largely 

underestimated[16-22]. We think the role of bosons in 

the model has been missed. Therefore, we add the 

boson correlations in the collision term and the boson 

yields are largely increased and closer to data. These 

features should be kept in mind when we discussing a 

possible BEC in the model. 

2 Determining the density and the 
temperature from fluctuations 

A method for measuring the temperature based on 

momentum quadruple fluctuations of detected 

particles was proposed in Ref.[30]. A quadruple 

moment 2 2Q p pxy x y   is defined in a direction 

transverse to the beam axis (z-axis) to minimize 

non-equilibrium effects[9-11]. The average Qxy  is 

zero for a given particle type in the center of mass of 

the equilibrated emitting source. Its variance is given 

by the simple formula: 

2 2 23 2( ) ( )d p p p f pxxy y                (1) 

where f(p) is the momentum distribution of particles. 

In Ref.[30] a classical Maxwell-Boltzmann 

distribution of particles with temperature clT  was 

assumed, which gives: 2 2
(2 )clN mTxy  , m  is the 

mass of the fragment, N  is the average number of 

particles. In heavy ion collisions, the produced 

particles do not follow classical statistics because of 

the quantum nature, the correct distribution function 

must be used in Eq.(1). Protons (p), neutrons (n), 

tritium (t), etc., follow the Fermi-Dirac statistics[9-10],  

while deuterons (d), alphas (α), etc., should follow the 

Bose-Einstein statistics[11]. 

For fermions, using a Fermi-Dirac 

distribution f(p) in Eq.(1), we obtain 

2 2
(2 ) ,cl QCN mT Fxy             (2) 

where FQC is the quantum correction factor. When 

/ 1T f   where 2 / 3 2 /3( / ) 36( / )0 0 0f f       MeV 

is the Fermi energy of the nuclear matter and 
3

0.16fm0
 , one can do the low temperature 

approximation and expand FQC to 4
( / )O T f . A 

detailed derivation can be found in Ref.[9]. At the 

beginning, we expected that this was sufficient when 

/ 1T f   is fulfilled. It turns out that higher order 

terms are needed when / 0.5T f  . Therefore, we 

parameterized the numerical result of FQC as a 

function of /T f , which is indistinguishable from the 

numerical result. Details can be found in Ref.[10]. We 

outline the results as: 

4 72 2 2 4( ) [1 ( ) ( ) ], (low )
35 6
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 (3) 

In the extreme case / 1T f  , the quantum correction 

factor FQC has the similar behavior in low temperature 

approximation and in the case including the higher 

order corrections. At high temperature T, FQC for 

higher order corrections in Eq.(3) converges to unity, 

where the classical limit is recovered as expected. The 

momentum quadruple fluctuations in Eq.(2) depend on 

temperature and density through f , thus we need 

more informations in order to be able to determine 

both quantities. 

Within the same framework we can calculate 

the multiplicity fluctuations of fermions[7,31-32]. Similar 

to the momentum quadruple fluctuations, the low 
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temperature approximation and including higher order 

corrections results are derived in Refs.[7,31-32], 

respectively. Since Eq.(3) is the function of T/εf  and 

in experiments or models one recovers the normalized 

multiplicity fluctuation 2( ) /N N , we express T/εf  

as a function of 2( ) /N N  for convenient to use. In 

the following paper, we will use x  to replace 
2( ) /N N  to simplify equations. Thus we have 

2
, (low )

3
0.422 20.422 0.345 0.12 . (higher order)

0.656(1- )

x T
T

f x x
x







 
   


 (4) 

When 1x , T/εf  for higher order corrections 

becomes 0.635x which recovers to the low temperature 

approximation result as expected. Once the normalized 

multiplicity fluctuation of fermions is measured from 

experimental data or model, one can easily derive the 

value of T/εf from Eq.(4). Then one can substitute T/εf  

into Eq.(3) to obtain FQC and solve Eq.(2) for T where 

momentum quadruple fluctuation can also be 

measured in experimental data or model. Knowing the 

T we obtain the Fermi energy from Eq.(4). Then one 

can derive the density of fermions from 
2 /336( / )0f    MeV. Till now, the scenario for 

fermions is completed. The multiplicity fluctuation is 

the first quantity we should investigate when we study 

the properties of fermions. 

For bosons, we need to use Bose-Einstein 

distribution in Eq.(1). There is difference from 

fermions. We need to consider the temperature below 

or above the critical temperature 

23.31 2/3
2/3(2 1)

Tc ms





             (5) 

for a particle of spin s  at a given density ρ. We 

obtain 

2 2
(2 ) (1), ( )cl QCN mT B T Txy c       (6) 

2 2
(2 ) ( ), ( )cl QCN mT B z T Txy c       (7) 

where ( ) ( ) / ( )QC 7/2 3/2B z g z g z  is the quantum 

correction factor for bosons, the ( )g zn  functions are 

well studied in the literature and /Tz e  is the 

fugacity which depends on the temperature T and the 

chemical potential μ connecting with Tc . Below the 

critical temperature (1) 0.4313QCB   and ( )QCB z  is 

always less than 1 above the critical temperature, thus 

the same quadrupole fluctuation implies a higher 

temperature in a Bose gas than in a classical gas. 

These features are in contrast to the behavior of 

fermion systems, for which the temperature is always 

smaller than the classical limit. The momentum 

quadrupole fluctuations depend on temperature and 

density through Tc , Eq.(5), thus we need more 

information in order to be able to determine both 

quantities when T Tc . We stress that Eqs.(6,7) are 

derived under the assumption of a non-interacting 

Bose gas. Interactions will change somehow the 

results. However, from superfluid 4He we know that 

the experimental critical temperature is not much 

different from the ideal gas result. 

Within the same framework we can calculate 

the multiplicity fluctuations of boson numerically 

when T Tc . When T Tc  the multiplicity fluctuations 

are always infinite since the isothermal compressibility 

diverges for ideal bosons[7,31-32]. This phenomenon is 

of course not observed in experiments. Therefore, we 

need to include interactions between bosons (and 

fermions if present) near the critical point. We use 

Landau’s phase transition theory near the critical 

point. 

More details of Landau’s phase transition 

theory can be found in Ref.[11]. We obtain the 

normalized multiplicity fluctuations for bosons are 

1
0.155 | | 0.155, ( )x t T Tc

       (8) 

1
0.62 | | 1, ( )x t T Tc

       (9) 

where ( ) /t T T Tc c   is the reduced temperature. For 

practical purposes, we parameterized ( )QCB z  

functions in Eq.(7) in terms of normalized multiplicity 

fluctuations x  through  [11]  
0.64521.5963| |

( ) 0.5764 1.0077 ,QCB z e
       (10) 

where 
0.452.8018( 1) 0.1142

3.018 ( 1) .
x

e x
T


  
       (11) 

Therefore, similar to fermions case, the multiplicity 

fluctuation of bosons is the first quantity to investigate. 

When T Tc , one can use Eqs.(7,10,11) to calculate 

the temperature T and then use Eq.(9) to calculate the 
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critical temperature Tc . It is straight forward to 

calculate the density of bosons using Eq.(5). When 

T Tc , one can use Eqs.(5,6,8) to calculate the 

temperature and density of bosons. 

3 Results and discussion 

To illustrate the strength of our approach we simulated 
40Ca+40Ca heavy ion collisions at fixed impact 

parameter b=1 fm and beam energies Elab/A ranging 

from 4 MeV/A up to 100 MeV/A. Collisions were 

followed up to a maximum time 1000 fm/c in order to 

accumulate enough statistics. The choice of central 

collisions was dictated by the desire to obtain full 

equilibration. This however, did not occur especially 

at the highest beam energies due to a partial 

transparency for some events. For this reason the 

quadrupole in the transverse direction, Eq.(1), was 

chosen. Furthermore, in order to correct for collective 

effects as much as possible, we defined a ‘thermal’ 

energy, eg. for proton, as: 

3cmth [ ] ,value2

E EEE p pxy
Q

AA N Np p
      (12) 

where /E Np p  and /E Npxy p  are the average 

total and transverse kinetic energies (per particle) of 

protons. 8 /valueQ N Zp , 8 MeV is the average 

binding energy of a nucleon and Z the total charge of 

the system and N p  the average number of protons 

emitted at each beam energy. For the other particles, 

we use the same definition to calculate the thermal 

energies. For a completely equilibrated system, the 

transverse kinetic energy (times 3/2) is equal to the 

total kinetic energy and the term in the square brackets 

cancels. All the center of mass energy, Ecm/A, is 

converted into thermal energy (plus the Qvalue). In the 

opposite case, say an almost complete transparency of 

the collision, the transverse energy would be 

negligible and the resulting thermal energy would be 

small. Our approximation will account for some 

corrections, and this will become more and more exact 

when many fragment types are included in Eq.(12). 

However, this approximation might be important in 

experiments where only some fragment types are 

detected or if, because of the time evolution of the 

system, different particles are sensitive to different 

excitation energies, for instance if some particles are 

produced early or late in the collision. 

 

Fig.1 Normalized multiplicity fluctuation versus excitation 
energy per particle. (Top panel) CoMD results for d and α 
particles. (Bottom panel) CoMD results for p, n, t and 3He. 
Notice the change of scales in the two panels. 

In Fig.1, we show the normalized multiplicity 

fluctuations of particles from CoMD. The multiplicity 

fluctuations quenching for fermions are observed, 

analogous to Refs.[12-14]. Recently, Stein et al. 

looked at his experimental data, the similar 

multiplicity fluctuations quenching for fermions are 

found. More details can be found in Ref.[33]. These 

results are also confirmed in Mabiala's experimental 

data Ref.[34]. Since the multiplicity fluctuations are 

obtained, we can use Eqs.(2-4) to extract the 

temperature and density of the system. Meanwhile, in 

the same frame, it is straightforward to derive other 

thermodynamical quantities. One such quantity is the 

entropy S. Details can be found in Ref.[11].  

To better summarize the results, we plot in 

Fig.2 the excitation energy per particle /thE A , 

energy density /thE A   and the entropy density 

/S A  versus temperature. The so called caloric 

curve is well studied in the literature and it shows a  

well-defined mass dependence. In Fig.2 we report the 

experimental data (open symbols) from Ref.[35], 

obtained in the mass region A=60–100, which is the 

closest to our system. Recall that the experimental 

values of the temperature were obtained using 
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classical approximations, thus it is no surprise that 

they agree well with our classical results (open star). 

The classical calculation clearly shows a region of 

constant temperature (less than 6 MeV) which would 

indicate a phase transition. However, notice that the 

density is changing with changing temperature. For 

this reason one might wonder on the physical meaning 

of the caloric curve and it could be better to investigate 

the energy density (middle panel). A rapid variation of 

the energy density is observed around 2 MeV for 

neutrons and 3 MeV for protons which indicates a 

first-order phase transition. As we can see from the 

figure, the higher order correction results give small 

corrections while keeping intact the relevant features 

obtained in the lowest approximation. This again 

suggests that in the simulations the system is fully 

quantal. We also notice that Coulomb effects become 

negligible at 3T   MeV where the phase transition 

occurs. The smaller role of the Coulomb field in the 

phase transition has recently been discussed 

experimentally in the framework of Landau's 

description of phase transitions[37-39]. The rapid 

increase of the entropy per unit volume (bottom panel) 

is due to the sudden increase of the number of degrees 

of freedom (fragments) with increasing T. 

Comparing the charge particle distribution 

with the experimental data shows that we cannot 

reproduce the experimental data completely. This is 

not surprising since we only have one fixed impact 

parameter in the model while the experimental data 

includes all the possible impact parameters. The 

experimental filter should be taken into account as 

well, but these features are not relevant to our goals. 

The important point is that the α yield is 

underestimated, a feature which cannot be corrected 

by including other impact parameters or the 

experimental filter. The important ingredient which is 

missing in the model is the possibility of boson-boson 

collisions (α–α, d–d, etc.) and correlations. Therefore, 

we propose a modification of the collision term in 

CoMD to include the possibility of α–α collisions. We 

refer to the modified version as CoMDα. We use 

Minimum Spanning Tree method (MST) to identify α 

particle at each time step, same as the cluster 

identification in CoMD. First one particle is chosen, 

then the three closest particles with the correct values 

of spin and isospin (i.e. two protons and two neutrons 

with opposite spin, respectively) are selected within 

the radius of 2.4 r  (the value used in the cluster 

identification) in coordinate space. If all the conditions 

are fulfilled, we identify the four particles as  . We 

run over all the particles and determine all the possible 

α particles. Each particle can belong only to one α. At 

each time step, we search for α–α pair whose distance 

is smaller than 2.5 fm. We follow the mean free path 

method[1,40-41] and define a collision probability for the 

   pair: 

1 ( )

1 ,

Vc r v dti ijEkeij

   
        (13) 

where   is the cross section, (1 )(1 )1 2f f    is the 

Bose-Einstein factor and fi  is the average occupation 

probability for α, i=1, 2, ρ(ri) is the local density, vij  

is the relative velocity of the two α particles, dt is the 

time step and 1 /V Ec k  is the Coulomb barrier 

correction factor where Vc  is the Coulomb energy 

between the two αs and Ek  is their relative kinetic 

energy. For simplicity, we take σ as the α–α geometric 

cross section in this study. Notice that in such an 

approximation, the strong resonances which lead to the 

formation of 8Be are not included. We expect that such 

resonances will increase the   yields from 8Be decay. 

However we have not be able to implement this effect 

in the present model. If an α–α collision occurs, we 

calculate the Bose-Einstein factor   before the 

collision and '  after the collision. If '  , the 

collision will be accepted, otherwise, rejected. Thus, 

the Bose factors (1 )fi  increase the probability of 

collision in contrast to the Pauli blocking factors[1-2]. 

This will produce fluctuations larger than Poissonian, 

which is a signature of a BEC. Meanwhile, if the α 

particle does not suffer any collision in that time step, 

one of its nucleons can collide with another nucleon 

subject to Pauli blocking. This might break the α into 

nucleons. We repeat the same simulations as before 

using CoMDα. 
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Fig.2  (Top panel) Excitation energy versus temperature. The 
full triangles refer to quantum temperatures; the open stars refer 
to classical temperatures from fluctuations; the open crosses 
refer to experimental data using double ratio thermometer from 
Ref.[35] obtained for mass number A=60–100. (Middle panel) 
Energy density versus temperature. Full symbols refer to the 
higher order correction results and the open symbols refer to the 
low temperature approximation results. (Bottom panel) Entropy 
density versus temperature. The full symbols refer to the results 
from Ref.[10] and the open symbols refer to the results from 
particle ratio of the number of d to p(n)[4,36] .  

 

Fig.3  Normalized multiplicity fluctuation versus excitation 
energy per particle. (Top panel) CoMDα results for d and α 
particles. (Bottom panel) CoMDα results for p, n, t and 3He. 
Notice the change of scales in the two panels. The d 
fluctuations keep increasing at high energies because they are 
produced from the decay of α excited clusters. Similarly for the 
large fluctuations observed for p and n. 

  Similar to Fig.1, we plot the normalized 

multiplicity fluctuations of particles versus excitation 

energy per particle in Fig.3. As we can see in the 

figure, d- and α-normalized fluctuations are generally 

larger than one (top panel). The multiplicity 

fluctuations of fermions (bottom panel) are less than 

one for most of the thermal energies. These results are 

what we expect. Since we consider the Pauli blocking 

for fermions and Bose-Einstein factor for bosons, the 

quantum effects for fermions and bosons should show 

up through the multiplicity fluctuations even if the 

system is a mixture of fermions and bosons. When the 

thermal energy is very high, the normalized 

fluctuations of fermions are larger than one as well, 

this suggests that the α particles are so excited to emit 

nucleons or d which carry the original large 

fluctuations of the parent. We also notice that the 

thermal energy of CoMDα in Fig.3 is larger than that 

of CoMD in Fig.1 with the same beam energy. This 

simply tells us that we have more thermalization in 

CoMDα than CoMD because of the large number of 

collisions in CoMDα, including the α–α collisions. 

 

Fig.4  (Top panel) Reduced density versus reduced 
temperature for bosons assuming T Tc ; (Bottom panel) 
reduced density versus reduced temperature for bosons 
assuming T Tc . 

In Fig.4, we plot the reduced densities for d 

and α versus reduced temperatures assuming the 

temperature is below the critical temperature (top 

panel) and the temperature is above the critical 

temperature (bottom panel). From Fig.4, one can see 

that below the critical temperature, the α’s densities 

are too high and unphysical. But the densities of 

bosons are reasonable assuming the temperature is 

above critical temperature. 
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4 Conclusion 

In conclusion, we have addressed a general approach 

for deriving densities and temperatures of fermions or 

bosons from quantum fluctuations (momentum 

quadrupole fluctuations and multiplicity fluctuations). 

For fermions, the higher order corrections results are 

consistent with the low temperature approximation 

results at very low temperature. We have shown that 

for high temperatures and low densities the classical 

result is recovered as expected. For bosons system, 

quadrupole and multiplicity fluctuations using 

Landau's theory of fluctuations near the critical point 

for a Bose-Einstein condensate (BEC) at a given 

density ρ are derived. We apply our approach to the 

simulation data of CoMD which includes the 

fermionic statistics. The multiplicity fluctuations 

quenching for fermion particles, due to the quantum 

nature, are found. These results also are confirmed by 

recent experimental data investigations. We derived 

the energy densities and entropy densities at different 

excitation energies for p and n. Both quantities show a 

rapid variation in the same temperature region, 

indicating a possible first-order phase transition. 

Considering the possibility of boson-boson collisions 

and correlations is missing in CoMD, the alpha 

production is underestimated compared to the 

experimental data. We proposed a modified version of 

the model, CoMDα, to include the possibility of α–α 

collisions. The relevent Bose-Einstein factor in the 

collision term is properly taken into account. This 

approach increases the yields of bosons relative to 

fermions closer to data. In the framework of CoMDα, 

we discussed the multiplicity fluctuations for particles 

and obtained the temperatures and densities for d and 

α. We suggest that multiplicity fluctuations larger than 

one for bosons, in contrast to fermions multiplicity 

fluctuations which are smaller than one, is a signature 

of a BEC in nuclei. 
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