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Abstract  Apparent softening of the symmetry energy with the inclusion of hyperon and quark degrees of freedom is 

demonstrated by the fact that the phase transition causes the change of the interaction and the suppression of nucleon 

fractions. The demonstration is fulfilled in the relativistic mean-field model. 
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1 Introduction 

The nuclear symmetry energy of isospin asymmetric 

nuclear matter is important to understand the structure 

of neutron- or proton-rich nuclei, the reaction 

dynamics of heavy-ion collisions[1-3], and many 

astrophysical issues[4-6] as well. In the past four 

decades, the properties of symmetric matter have been 

constrained rather satisfactorily, while just in the 

recent decade, appreciable progress has been achieved 

on constraining the symmetry energy at saturation and 

subsaturation densities either through the extraction 

based on astrophysical observations or in terms of 

terrestrial data[7-11]. However, the density dependence 

of the symmetry energy is still poorly known 

especially at supra-normal densities[3,12-14]. The density 

dependence of the symmetry energy is rather diverse 

according to theoretical predictions. It may increase 

nonlinearly or linearly with the density. Strikingly, 

some non-relativistic models even predict that the 

symmetry energy soon goes to negative values at 

densities several times normal density. This can 

probably cause severe problems in stabilize the 

structure of neutron stars. On the other hand, similarly 

diverse symmetry energy was extracted from 

analyzing the FOPI/GSI data on the −/   ratio in 

relativistic heavy-ion collisions with various transport 

models[12-14]. Recently, the required coincidence with 

data from the ALADIN-2000 collaboration, analyzed 

by Kumar et al.[15], suggested a soft symmetry energy 

that differs from the super-soft one obtained from the 

analysis of FOPI/GSI data. More discussions on the 

status quo of the experimental extraction can be found 

in a recent work[16]. These extractions really reflect the 

fact that the density dependence of the symmetry 

energy is still very illusory, provided the equation of 

state of symmetric matter used in the transport models 

is well constrained.  

Regardless of the inconsistency in the 

experimental extractions, the theoretical uncertainty of 

high-density symmetry energy is regarded to be 

associated with the tensor force that originates from 

the exchange terms[17,18]. In the ladder approximation, 

the exchange terms can be well treated in the 

Brueckner theory either in the relativistic or 

non-relativistic frameworks[19,20]. However, the 

mean-field approximation without exchange terms 

works more sophisticatedly in high-density matter. It is 

thus incomprehensible that the tensor force can 

completely explain the marvellous softening of the 

high-density symmetry energy.  In this work, we 

decline the strategy using the tensor force to solve the 

symmetry energy divergence but explore the effect of 

the non-nucleonic degrees of freedom on the 

symmetry energy. The results reported here are 

performed in the relativistic Hartree approximation.  
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2 Modelling 

In this work, we consider the non-nucleonic degrees of 

freedom which include hyperons and quarks. On the 

hadron level, we make use of the relativistic 

mean-field (RMF) models. The original Lagrangian of 

the RMF model was first proposed by Walecka 40 

years ago[21]. The Walecka model and its improved 

versions were characteristic of the cancellation 

between the big attractive scalar field and the big 

repulsive vector field. The success of the RMF models 

is partially attributed to its dynamical description for 

the spin-orbit interaction. On the quark level, we adopt 

the MIT bag model[22] to portray the quark phase. The 

mixed phase is built on the mechanical and chemical 

equilibriums according to Gibbs conditions.  

In the parabolic approximation, the energy per 

nucleon in isospin asymmetric nuclear matter can be 

written as 

2
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where 0 ( )e   is the energy per nucleon in symmetric 

nuclear matter, sym ( )E   is the density dependence of 

symmetry energy, and ( ) /n p      is the 

isospin asymmetry.  The symmetry energy in the 

RMF models reads, 
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where C is the ratio of the   coupling constant with 

the nucleon to the   meson effective mass, kF and EF 

are the nucleon Fermi momentum and energy, 

respectively. In the presence of hyperons, it reads 
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where B and N are the baryon and nucleon density, 

respectively. As the quarks appear, the system is first 

in the mixed phase and then in pure quark phase at 

very high densities. The symmetry energy can be 

defined according to the similar parabolic 

approximation of the equation of state, 
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where H and Q denote hadrons and quarks, 

respectively, and Y is the quark phase proportion.   

3 Results 

For simplicity, we just consider the   hyperon which 

usually occupies a majority of hyperons in hyeronized 

matter. The symmetry energy for various    fractions 

is calculated in symmetric matter at 0. The effect 

of    hyperons on the nuclear symmetry energy with 

the RMF model NL3[23] is illustrated in Fig.1. It is 

shown in Fig.1 that the symmetry energy is softened 

clearly with the increase of the    fraction. Compared 

with Eqs.(2) and (3), we see that the softening is 

dominated by the suppression factor /N B  . 

However, even without this suppression factor, the 

symmetry energy in hyperonized matter is still 

modified by the isoscalar    hyperons provided there 

exists the isoscalar-isovector coupling  v (for model 

details, see Ref.[2]). This is clearly seen in the inset of 

the lower panel of Fig.1 where the potential part of the 

symmetry energy is displayed. Similarly, if the 

charged hyperons are included, the potential part of the 

symmetry energy can be modified even without the 

isoscalar-isovector coupling. This can be verified 
 

 
Fig.1  Symmetry energy as a function of density in the 
presence of the   hyperons. The curves depicted are for 
various hyperon fractions. The upper panel presents the NL3 
results without the isoscalar-isovector coupling, while the lower 
panel include such a coupling that softens the symmetry energy. 
The potential part of the symmetry energy ( ) 2

sym / 2p
BE C  in 

the inset of the lower panel is drawn for two cases with and 
without hyperons.  
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numerically, while it is beyond the scope of the present 

work. Nevertheless, we may infer that the symmetry 

energy may significantly be modified by taking into 

account the hyperons.  

 With the increase of density, the hadron-quark 

phase transition may occur. In this work, quark matter, 

regarded as the free fermion gas without interactions, 

is described by the MIT bag model[22]. The mixed 

phase consists of high-density quark matter and 

low-density nuclear matter with the quark phase 

proportion Y being obtained according to Gibbs 

conditions. The quark phase proportion Y depends on 

the isospin asymmetry. In this way, the symmetry 

energy in the mixed phase obtained in symmetric 

matter cannot simply be used to predict the properties 

of asymmetric matter because the quark phase 

proportion changes with the isospin asymmetry in 

asymmetric matter. Nevertheless, the symmetry energy 

obtained in symmetric matter is instructive to exhibit 

its variation tendency in the mixed phase. Shown in 

Fig.2 is the nuclear symmetry energy as a function of 

baryon density using the RMF models SLC and 

SLCd[24-26] combined with the MIT bag model with the 

bag constant B  (160 MeV)4 (upper panel) and 

B (180 MeV)4 (lower panel). Apparent decrease of  

 

Fig.2  (Color online) Nuclear symmetry energy as a function 
of density in symmetric matter in the presence of the 
hadron-quark phase transition. The reflection point from rising 
to dropping corresponds to the critical density for each model. 
The two RMF models SLC and SLCd are used. The results in 
upper and lower panels differ in the value of the bag constant. 
Above the reflection point, the plotted is the symmetry energy 

sym
HE . 

the symmetry energy can be observed after the 

hadron-quark phase transition occurs. With the 

increase of density, the nucleon proportion decreases, 

this causes an apparent reduction of the nuclear 

symmetry energy. As the nucleon proportion reduces 

to zero, the nuclear symmetry energy vanishes. 

Appreciably, it is seen that the change of the symmetry 

energy is very sensitive to the bag constant. Moreover, 

in Fig.2 we compare two cases with and without 

hyperons. It is found that the inclusion of hyperons 

further softens the symmetry energy as the 

hadron-quark phase transition occurs. 

It is worth noting that the softening of the 

symmetry energy in the mixed phase is mostly 

apparent because once the quark phase proportion can 

be identified at given densities the nuclear symmetry 

energy would be extracted appropriately by singling 

out the effect of suppression factor (1−Y). However, 

the determination of the Y is strongly model-dependent 

and far from experimental feasibility. Thus, the 

extraction of the high-density symmetry energy for 

pure nucleonic matter is not well grounded once the 

hadron-quark phase transition takes place. Most likely, 

the high-density symmetry energy extracted from the 

heavy-ion collisions would be as soft as that presented 

in this work because of the absence of a reliable 

discrimination or calibration for dynamically 

evolutional matter. 

4 Conclusion 

We have reported the effect of   hyperons and quarks 

on the nuclear symmetry energy at high densities with 

the RMF models combined with the MIT bag model. 

The softening of the nuclear symmetry energy is 

observed in nuclear matter at given   fractions. In the 

presence of the hadron-quark phase transition, the 

nuclear symmetry energy obtained in the mixed phase 

reduces quickly with the rise of quark phase 

proportion. We argue that this softening is apparent but 

is most likely realistic according to the capacity of the 

experimental detection. 
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