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Abstract  The equation of state of symmetric nuclear matter is studied with an equivalent mass model. The 

equivalent mass of a nucleon has been expanded to order 4 in density. We first determine the first-order expansion 

coefficient in the quantum hadron dynamics, then calculate the coefficients of the second to fourth order for the given 

binding energy and incompressibility at the normal nuclear saturation density. It is found that there appears a density 

isomeric state if the incompressibility is smaller than a critical value. The model dependence of the conclusion has 

also been checked by varying the first-order coefficient. 
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1 Introduction 

Modern nuclear physics has recently made much 

progress in understanding a number of interesting 

phenomena, such as the monotonic decreasing direct 

flow in the collective motion of relativistic heavy ion 

collisions[1], the extension of the symmetry energy 

from heavy-ion collisions at intermediate energies 

suggests a soft symmetry energy[2], the mass reduction 

of the pressure and transition temperature in single-

flavor color superconductivity[3], an analytic 

expression of nuclear symmetry energy to the fourth 

order[4], the first direct observation of the deexcitation 

of the low-lying isomeric state 229mTh from photon 

emission[5], etc.  

Isomeric states are very interesting and 

important to the nuclear equation of state (EoS). It is a 

common sense that there is a minimum in the density 

dependence of the average energy per nucleon with the 

corresponding density normally called the nuclear 

saturation density. Early in 1950s, people had already 

realized that a second minimum, the so-called density 

isomer, could exist in nuclear matter[6]. The density 

isomer could arise from phase transition[6], pion 

condensation[7-10], the three-body force[11], etc. 

Normally, it is not very easy to produce a second 

minimum in nuclear EoS because it originates, most 

probably, from higher-order contributions. In principle, 

people have the fundamental theory of strong 

interactions, the Quantum Chromodynamics (QCD). 

However, due to the difficulty in the treatment of 

interaction in non-perturbative regime and the 

consistent implementation of chemical potential for 

finite density, phenomenological models have been 

popularly applied. On the other hand, a non-interaction 

system is exactly solvable. One can, therefore, use an 

equivalent particle mass to mimic the interaction effect. 

The equivalent mass approach has been extensively 

applied, e.g., in studying properties of quark  

matter[12-16], strangelets[17], in-medium chiral 

condensates[18-20], strange quark stars[21], and QCD 

phase transition[22]. 

As for an application to nuclear matter, we 

have previously seen that the equivalent-mass 

approach produces the nuclear saturation when the 

equivalent mass was expanded to a Taylor series to 

order three in density[20]. The purpose of the present 

paper is to check if the equivalent-mass model can 

produce the density isomer by extending the 

equivalent mass of nucleons to the fourth order. We 

first determine the first-order expansion coefficient in 

the quantum hadrondynamics, then calculate the 
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coefficients of the second to fourth order for the given 

binding energy and incompressibility at the normal 

nuclear saturation density. It is found that there exists a 

density isomeric state if the incompressibility is 

smaller than a critical value. The model dependence of 

the conclusion has also been checked by varying the 

first-order coefficient. 

The paper is organized as follows. In the 

subsequent Section 2, we describe the equivalent-mass 

model suitable for symmetric nuclear matter, while the 

relevant thermodynamics treatments are presented in 

Section 3. Then numerical results and discussions are 

provided in Section 4. And finally a summary is given 

in Section 5. 

2 Equivalent-mass model for symmetric 
nuclear matter 

As mentioned in the introduction, the model we use 

tries to include interaction between particles in an 

equivalent mass. This equivalence is ensured by the 

proper variation of the particle mass with density. With 

the definition of the equivalent mass, the energy 

density of symmetric nuclear matter can be written as 

the same form with that of free particles, i.e.,  

2 2 2
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,
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where g=2×2=4 is the degeneracy factor. M is a 

density-dependent nucleon mass to be determined by 

expansion a little later. The Fermi momentum  is 

connected to the nucleon number density  by 
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Explicitly, the integration in Eq.(1) can be carried out 

to give 
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Also from Eq.(1), one can get 
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Or, one explicitly has the expression 
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The second derivative can also be obtained as 

 2 22
2

2 2 2 2

3
3 arcsh .

4

Mg
M

M MM

  



            
 (6) 

With a glance at Eq.(4), we immediately know 

that ∂/∂M>0, i.e.,  is a monotonically increasing 

function of the nucleon mass at any fixed density, one 

can, therefore, give any value of  with an equivalent 

density dependent nucleon mass, given the energy 

density is not smaller than 

4/32
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which is obtained by setting M=0 in Eq.(1), or taking 

the limit M→0 in Eq.(3). 

Figure 1 demonstrates this in an obvious way, 

where the energy density is plotted, according to 

Eq.(3), as a function of the nucleon mass at different 

values of the nucleon number density. Generally it is a 

monotonically increasing function. 

 
Fig.1  The energy density as a function of the nucleon mass at 
different fixed density. The three curves correspond to different 
fixed values of the density indicated in the legend. 

Therefore, if one can get the energy density 

from some other models or even from QCD possibly 

in the future, we solve the equation ε=Emod for the 

equivalent mass. 

In the covariant meson-baryon effective field 

theories of the nuclear many-body problem (often 

called quantum hadron dynamics or QHD[23,24]), for 

example, we have[20] 
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where MN=938.926 MeV is the average mass of 

nucleons in free space. Mσ and Mω are, respectively, 

the masses for the sigma and omega mesons. gσ and gω 

are the corresponding coupling constants. It is 

noticeable that the equivalent mass contains 

contributions not only from the scalar σ meson, but 

also from the vector  meson. This is different from 

the conventional effective masses that depend merely 

on the scalar meson. 

The first derivative of the energy per nucleon 

with respect to the density satisfy 
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where the expression of the partial derivative ∂/∂M  

has been given in Eq.(5). Similarly, for the second 

derivative we have 
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3 Thermodynamic treatment 

Special attention should be paid to the consistency of 

thermodynamic formulas, when the particle mass 

depends explicitly on density. At zero temperature, the 

main expressions are the energy density and the 

pressure. In literature, there are three kinds of 

treatments. In the first treatment, both the energy 

density and pressure expressions have the same form 

with those of the constant-mass case[12]. In the second 

one, both the energy density and pressure have an 

additional term due to the density dependence of the 

particle mass[13]. Finally in the third treatment, the 

additional term are added only to the pressure, but not 

to the energy density[14,15,22]. These treatments were 

originally provided for quark matter with density-

dependent quark masses. In the present context of 

nuclear matter, the energy density and pressure 

expressions for the first treatment are 
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for the second treatment, these become 
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for the third treatment, they are 
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In Eqs.(11-13), the ε expression is in Eq.(1) or Eq.(3), 

while the quantity 0 is the same form as the 

thermodynamic potential density of a free system, but 

with the constant particle mass replaced by a density-

dependent one, i.e., 

0

2 2 .M              (14) 

Replacing the p with υ in the squared root on 

the right hand side of Eq.(1), one immediately finds 

that 2 2M   . This leads inevitably to P1>0, 

i.e., the pressure in the first treatment can never be less 

than zero. This means the equation of state is always a 

monotonic line, which is obviously not correct. In the 

second treatment, the pressure can be zero or negative. 

However, the zero pressure is not consistent with the 

minimum of the energy per nucleon. A little later we 

will see that the pressure should be exactly zero at the 

energy minimum. One can check, the third treatment 

satisfies thermodynamic consistency requirement. 

In fact, the chemical potential can be obtained 

from dε/d, giving 
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In normal thermodynamic formulas, one has 

only the first term on the right. In the present case, we 

have an additional term, i.e., the second term in Eq.(15) 

which occurs due to the density dependence of the 

nucleon mass. It also appears in the pressure 
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The extra term is very important to ensure 

thermodynamic consistency[22]. From Eqs.(9), (15), 
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and (16), we can easily check that 
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This expression can also be directly derived from the 

fundamental differential equality: 

( ) ,d V PdV dN             (18) 

where V is the volume. N is the particle number.  is 

the energy density. V is the system energy. Eq.(18) is 

nothing but a combination of the first and second laws 

of thermodynamics at zero temperature. Because 

=N/V, simple derivation from Eq.(18) gives 
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which leads to Eq.(17) directly. Please note the 

subscript N means that the corresponding derivative is 

taken at a fixed N. 

Eq.(17) explicitly shows that the pressure is 

exactly zero at an energy extreme (minimum or 

maximum) where the first derivative of the energy per 

nucleon with respect to density vanishes. 

If one would like to express the 

thermodynamic quantities with the effective chemical 

potential, 
* 2 2 ,M                  (20) 

then Eqs.(14), (15), and (16) become 
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Omitting the effective indicator (the superscript ) and 

the free system indicator (the subscript 0) will give the 

previously applied corresponding formulas[14-16]. 

Therefore, the chemical potential there should be 

understood as an effective one. Because the effective 

and real chemical potentials differ only by a common 

quantity, both of them satisfy the same weak-

equilibrium equations. Consequently, the numerical 

calculations in using only the effective chemical 

potential are all right. However, if one wants to study 

phase diagram, the real chemical potential must be 

calculated in the model. This point was explicitly 

pointed out in Ref.[22]. 

It should be mentioned that a recent paper[25] 

criticized the third treatment, and finally returned back 

to the first treatment. As shown in the above, however, 

the first treatment can not give any negative pressure 

to maintain mechanical equilibrium, and the pressure 

is never zero at the energy minimum (if any). Secondly, 

the paper did not distinguish between the effective and 

real chemical potentials, and the thermodynamic 

inconsistency is inevitable (if using their formulas to 

do calculations in phase transition, one should prepare 

to meet unexpected results). Thirdly, and more 

seriously, it modified the fundamental differential 

relation of thermodynamics by introducing “an 

intrinsic degree of freedom m*” which depends 

obviously and explicitly on density. In this regard we 

would comment that the authors should modify their 

model to obey the fundamental theory of 

thermodynamics, rather than doing the inverse. We 

therefore continue to apply the third treatment in the 

present calculations. For a fully-consistent 

thermodynamic derivation and explanation, both at 

zero and finite temperate, one may refer to Ref.[22]. 

4 Numerical results and discussion 

The density dependence of the equivalent nucleon 

mass is in principle very complicated. A natural 

requirement is 

N0
lim ( ) ,M M





             (24) 

therefore, it can be expanded to a series in density as 
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where the quantity sc is a scale parameter to let the 

expansion coefficients ai be dimensionless. In 

principle, its value can be arbitrarily chosen. Naturally, 

different choice of sc will lead to different values of ai. 

However, the choice does not change the actual 
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physics, and the concrete values of ai do not change 

with choosing different unit systems. In the present 

calculation, we take the natural value of sc= 0.17 fm–3, 

which is approximately the nuclear situation density. 

In principle, there should be an infinite number 

of terms in Eq.(25). We now consider the expansion to 

order 4, i.e., 
2
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According to Eq.(24), we naturally have a0=1. 

Comparing Eq.(25) with Eq.(8), we get 
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The relevant meson masses and couplings are taken to 

be g =10.6, M = 545 MeV, g =12.6, M = 782 MeV. 

These values give a1= –0.082545. 

For higher order coefficients, there are no 

direct expressions to be compared with. However, at 

the saturation density 0, we have 
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where 0 ≈ 0.17 fm–3 is the normal nuclear saturation 

density. Eb ≈ –15.9 MeV is the nuclear binding energy 

at the saturation. These quantities and the nucleon 

mass MN are very nicely fixed. For a given value of 

the corresponding incompressibility K, we can 

determine the coefficients a2, a3, a4. For example, for     

K=300 MeV, 200 MeV and 160 MeV, the 

corresponding a2, a3 and a4 are listed in Table 1. 

Table 1  Expansion coefficients at order-4 level. The binding 
energy is taken to be Eb≈ –15.9 MeV at the saturation density 
0≈ 0.17 fm–3 

K/MeV  a1 a2 a3 a4 
160   –0.082545 0.058185  –0.020297 0.0025215
200 –0.082545 0.060614 –0.025155 0.0049502
300 –0.082545 0.066686 –0.037298 0.0110219

In Fig.2, we show the binding energy per 

nucleon, / – MN, as a function of density for several 

typical values of the incompressibility. One can see 

that all the curves go through the saturation point 

which is a energy minimum. Because the pressure is 

zero and the curve is concave (the second derivative is 

positive), the energy minimum is mechanically stable. 

 
Fig.2  The binding energy per nucleon of symmetric nuclear 
mass as a function of density. All the curves saturate at      
0 ≈ 0.17 fm–3 with the binding energy Eb ≈ –15.9 MeV. The 
corresponding incompressibility is indicated in the legend. 
Noticeably, if the incompressibility is small, there exists the 
second minimum. 

There are two cases when the density goes 

higher. For bigger incompressibility, it increases 

monotonically with increasing density above the 

saturation. For the case of a smaller incompressibility, 

however, there appears another point where the 

pressure is also zero. However, the curve is convex 

(the second derivative is negative), it is thus a 

maximum. When the density goes further higher, we 

see another minimum which is an isomeric state, or 

density isomer. 

 
Fig.3  The density isomer in nuclear matter is a mechanically 
stable and physically meta-stable state. The energy of this 
density isomer is a little bit higher than the energy state at the 
saturation. The difference can be several KeV to several MeV 
depending on the parameters. 
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The density isomer appears at about three 

times the nuclear saturation density. In Fig.3, the 

energy per nucleon, /, and the corresponding 

pressure is simultaneously shown. It is obvious that 

the pressure at the second minimum is zero. The 

isomer is also mechanically stable. Its energy per 

nucleon is merely a little bit higher than the energy per 

nucleon at the normal saturation density. 

In the above calculation, we have given the 

value for the coefficient a1 by Eq.(27) from the QHD. 

We now check how the value of a1 influences the 

isomer because a different model can easily give a 

different a1 value. For this we need to discuss the 

value of K. 

 
Fig.4  Variation of the density isomer on the order-1 
expansion coefficient a1 with values indicated in the legend. 
The density isomer exists only for properly smaller a1 values. 

The incompressibility is the curvature of the 

equation of state and thus measure the stiffness of 

nuclear matter at the saturation density. Its value is 

presently not completely determined though the iso-

scalar giant monopole resonance provides a direct 

experimental tool to study nuclear incompressibility in 

finite nuclear systems[26]. The early calculation with 

relativistic models[27], where the contributions from 

negative energy sea had been included, gave values of 

250–270 MeV. Recently, non-relativistic models[28,29] 

give a little bit smaller values of 220–233 MeV. The 

experimental determination comes from a study of the 

iso-scalar giant monopole resonance or the breathing 

mode state. In this regard a data fit based on a model 

of nuclear energy functional and the scaling 

assumption of the nuclear breathing mode gives 

(220±20) MeV[30]. We thus use K = 220 MeV to check 

the model dependence of the isomer. For the given 

incompressibility, we manually give an a1, rather than 

calculate it from Eq.(27). For a2, a3, a4, they can still 

be solved from Eqs.(28-30). 

In Fig.4, we plot, at K = 220 MeV, the binding 

energy per nucleon as a function of the density for 

different chosen values of a1. For smaller values of a1, 

there exists the isomeric state. With increasing a1, the 

energy difference between the two minima also 

increases. When a1 increases to a critical value      

(– 0.07755 in Fig.4), the density isomer disappears. 

5 Conclusion 

We have studied the density isomer in the symmetric 

nuclear equation of state with the equivalent mass of 

nucleons expanded to order 4 in density. It is found 

that the density isomer exists if the nuclear 

incompressibility is comparatively smaller. The 

density isomer is the second energy minimum at about 

three times the normal nuclear saturation. Its average 

binding energy can be several KeV to MeV. 

However, the concrete values should not be 

taken seriously because the present treatment is rather 

rough, and more investigations in details are needed. 

Application of the equivalent-mass model to the study 

of symmetry energy may be helpful, and it is suitable 

to be given elsewhere in the future. 
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