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Abstract In this talk, we first briefly review the isospin

dependence of the total nucleon effective mass M�
J inferred

from analyzing nucleon-nucleus scattering data within an

isospin-dependent non-relativistic optical potential model,

and the isospin dependence of the nucleon E-mass M
�;E
J

obtained from applying the Migdal–Luttinger theorem to a

phenomenological single-nucleon momentum distribution

in nuclei constrained by recent electron-nucleus scattering

experiments. Combining information about the isospin

dependence of both the nucleon total effective mass and

E-mass, we then infer the isospin dependence of nucleon

k-mass using the well-known relation M�
J ¼ M

�;E
J �M�;k

J .

Implications of the results on the nucleon mean free path in

neutron-rich matter are discussed.

Keywords Effective mass � Equation of state � Symmetry

energy � Neutron-rich matter

1 Nucleon effective masses

To ease the following discussions, we first recall the

basic definitions and relations of the three distinct nucleon

effective masses used typically in non-relativistic descrip-

tions of nuclear matter and give a few examples of model

predictions.

The k-mass M
�;k
J and E-mass M

�;E
J of a nucleon J ¼ n=p

characterizes, respectively, the space and time non-locality

of nuclear interactions. They are normally obtained from

the momentum and energy dependence of the single-nu-

cleon potential UJðq; d; k;EÞ in nucleonic matter of density

q and isospin asymmetry d � ðqn � qpÞ=q via [1, 2, 3]

M
�;E
J

M
¼ 1� oUJ

oE
and

M
�;k
J

M
¼ 1þMJ

jkj
oUJ

ojkj

� ��1

ð1Þ

where M is the average mass of nucleons in free-space.

Once an energy-momentum dispersion relation is assumed

using the on-shell condition E ¼ k2=2M þ UJðq; d; k;EÞ,
an equivalent single-particle potential either local in space

or time can be obtained. The so-called total effective mass

M�
J
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M�
J

M
¼ 1� dUJðkðEÞ;E; q; dÞ

dE EðkJ
F
Þ

���
¼ 1þ M

�h2kJF

dUJðk;EðkÞ; q; dÞ
djkj

� ����
kJ
F

#�1

ð2Þ

is then used to characterize equivalently either the

momentum or energy dependence of the single-nucleon

potential. We emphasize that once nucleons are put on

shell, the total effective mass is the only effective mass one

can extract from either the first or the second part of the

above equation. As we shall discuss later, one then has to

use other approaches to evaluate the E-mass and k-mass.

The total effective mass is a measure of the energy level

density. The well-known relationship

M�
J ¼ M

�;E
J �M�;k

J ð3Þ

among the three kinds of nucleon effective masses can be

derived by noticing that [1]

dE

dk
� k

M�
J

¼ k

M
þ oU

ok
þ oU

oE
� dE
dk

: ð4Þ

In the above, kJF ¼ ð1þ sJ3dÞ
1=3 � kF with kF ¼ ð3p2q=2Þ1=3

being the nucleon Fermi momentum in symmetric nuclear

matter at density q, sJ3 ¼ þ1 or �1 for neutrons or protons.

Many microscopic many-body theories using various

interactions have been used in calculating all three kinds of

nucleonic effective masses, see, e.g., Ref. [4] for a recent

review. Shown in Figs. 1 and 2 are examples of Brueckner–

Hartree–Fock (BHF) predictions of the E-mass, k-mass and

total effective mass of neutrons and protons in asymmetric

nuclear matter using some of the most widely used nuclear

interactions. The recent focus of many studies has been on

the splitting of the neutron–proton effective masses and its

dependence on the isospin asymmetry and density of the

neutron-rich medium encountered in heavy-ion collisions

and in some astrophysical situations [7, 8], such as in

neutron stars and neutrino spheres of supernova explosions.

A thorough understanding of the nucleon effective masses

is critical for us to better understand many interesting

issues in both nuclear physics and astrophysics. Generally,

most of the models predict that in neutron-rich medium,

neutrons have a k-mass and total effective mass higher than

those for protons, and protons have a higher E-mass than

neutrons at their respective Fermi surfaces. However,

depending on the models and interactions used, the pre-

dictions can change dramatically. For example, some of the

widely used Skyrme interactions predict that protons have

a higher total effective mass than neutrons in neutron-rich

matter. Thus, it is very important to extract reliable infor-

mation about the nucleon effective masses from experi-

ments [9, 10]. While conclusions from recent analyses of

heavy-ion experiments using transport models are still

quite ambiguous even about the sign of the neutron–proton

total effective mass splitting [9, 10], it is very encouraging

that analyses of nucleon-nucleus and electron-nucleus

scatterings can constrain clearly at least the sign of the

neutron–proton total and E-mass splitting, respectively, at

saturation densities [11, 12]. In this talk, we shall briefly

review theses results and then infer from them the neutron–

proton k-mass splitting at saturation density. For more
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Fig. 1 Effective k-masses (solid lines) and E-masses (dashed lines)

of neutrons (red) and protons (blue) derived from the BHF self-

energies using the CD–Bonn interactions for nucleonic matter with an

isospin asymmetry of 0.5 at saturation density. Taken from Ref. [5] of

Hassaneen and Müther. (Colour figure online)
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Fig. 2 Proton (p, full line) and neutron (n, dotted line) total effective

masses as a function of density for different values of the isospin

asymmetry parameter b from a BHF calculation by Baldo et al. in

Ref. [6]
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details, please see the original publications in Refs.

[11, 12, 14].

2 Relation between the neutron–proton effective
mass splitting and symmetry energy in neutron-
rich matter

Assuming the energy on-shell condition has been used,

the single-nucleon potential can be written as a function of

momentum k, i.e., UJðk; q; dÞ. The latter is the well-known
Lane potential that can be expanded as [13]

UJðk; q; dÞ ¼ U0ðk; qÞ þ s3Usymðk; qÞ � dþOðd2Þ; ð5Þ

where U0ðk; qÞ and Usymðk; qÞ are the isoscalar and

isovector potential, respectively. The neutron–proton

effective mass splitting m�
n�pðq; dÞ � ðM�

n �M�
pÞ=M can be

written as [14]

m�
n�p ¼

M
�h2

1
k
p
F

dUp

dk
jkp

F
� 1

kn
F

dUn

dk
jkn

F

� �

1þ Mp

�h2kp
F

dUp

dk
jkp

F

h i
1þ Mn

�h2kn
F

dUn

dk
jkn

F

h i : ð6Þ

Up to the first-order in isospin asymmetry parameter d, the
above expression can be further simplified to

m�
n�p � 2d

M

�h2kF
� dUsym

dk
� kF

3

d2U0

dk2
þ 1

3

dU0

dk

� �
kF

M�
0

M

� �2

:

ð7Þ

Generally, the m�
n�p depends on the momentum depen-

dence of both the isovector Usym and isoscalar U0 poten-

tials. Interestingly, the same factors also determine the

density dependence of nuclear symmetry energy. The latter

is currently the most uncertain part of the equation of state

of neutron-rich matter and has significant implications for

many areas of both nuclear physics and astrophysics, see,

e.g., Ref. [15] for a recent review. Using the Hugenholtz–

Van Hove (HVH) theorem [16] or the Bruckner theory

[17, 18, 19, 20], nuclear symmetry energy EsymðqÞ and its

density slope LðqÞ � 3qðoEsym=oq
	 


q have been expressed

as [21, 22, 23]

EsymðqÞ ¼
1

3

�h2k2F
2m�

0

þ 1

2
Usymðq; kFÞ; ð8Þ

LðqÞ � 2

3

�h2k2F
2m�

0

þ 3

2
Usymðq; kFÞ þ

dUsym

dk
jkF kF : ð9Þ

We emphasize here that the isoscalar effective mass m�
0

enters explicitly the above expressions for both the mag-

nitude and slope of the symmetry energy. Thus, there is no

surprise at all that some transport model simulations have

indicated that isospin-tracers and observables sensitive to

the symmetry energy, such as the isospin diffusion and

neutron/proton ratio of energetic nucleons in heavy-ion

collisions, are also affected by the isoscalar nucleon

effective mass. Moreover, the study of the isospin depen-

dence of nucleon effective masses and the symmetry

energy are intrinsically correlated by the same underlying

interaction. In fact, by neglecting the contributions of the

momentum dependence of the isoscalar effective mass

itself and the second-order symmetry (isoscalar d2 term)

potential, the neutron–proton effective mass splitting can

be readily expressed in terms of the Esymðq0Þ and Lðq0Þ as
[14]

m�
n�pðq0; dÞ � d �

3Esymðq0Þ � Lðq0Þ � 1
3
M
M�

0

EFðq0Þ

EFðq0ÞðM=M�
0Þ

2
:

ð10Þ

It is interesting to note that the M�
n is equal, larger or

smaller than the M�
p depending on the symmetry energy

and its slope. For example, using empirical values of

Esymðq0Þ =31 MeV, M�
0=M ¼ 0:7 and EFðq0Þ ¼ 36 MeV,

a value of Lðq0Þ � 76 MeV is required to get a positive

m�
n�pðq0; dÞ. Interestingly, most of the extracted values of

Esymðq0Þ and Lðq0Þ from both terrestrial experiments and

astrophysical observations satisfy this condition [14, 15].

3 Neutron–proton total effective mass splitting
from nucleon-nucleus scatterings

As illustrated in the examples shown in Figs. 1 and 2,

nucleon effective masses are strongly density/momentum

dependent, especially for the E-masses near the Fermi

momenta. Ultimately, one has to find ways using, such as

observables in heavy-ion collisions and/or neutron star

observables, to probe the entire density/momentum depen-

dences of all kinds of nucleon effective masses. Interestingly,

nucleon-nucleus and electron-nucleus scattering data accu-

mulated over several decades have already been used to

constrain, respectively, the total effectivemass and theE-mass

at saturation density of nuclear matter. These provide impor-

tant boundaries for the nucleon effective masses and may be

used already to constrain some of the models and the

interactions.

Optical model analyses of nucleon-nucleus scatterings

have long been used to extract the momentum dependence of

the isoscalar potential dU0=dk at saturation density and the

associatednucleon isoscalar effectivemassm�
0 since the 1960s

[24].We summarize here themain findings of a global optical

model analysis [11] of all 2249 data sets of reaction and

angular differential cross sections of neutron and proton

scattering on 234 targets at beam energies from 0.05 to
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200 MeVavailable in theEXFORdatabaseat theBrookhaven

National Laboratory [25]. Shown on the left of Fig. 3 is a

comparison of the nucleon isoscalar U0 potentials from this

analysis (hatched bands) [11] and the Schr€odinger equivalent

isoscalar potential obtained earlier by Hama et al. [26].

Interestingly, theybothgive consistently an isoscalar effective

mass of m�
0=m ¼ 0:65� 0:06 consistent with its empirical

value in the literature. Shown on the right is the energy

dependence of the nucleon isovector potential Usym from

several earlier studies [27, 28, 29, 30] and the most recent one

(hatched bands) [11]. Most of the earlier results are valid in

low energy ranges. Albeit at different slopes, they all clearly

indicate a decreasing isovector optical potential with an

increase in energy. After carefully translating the optical

potentials into single-nucleon potentials in nuclear matter at

saturation density, a neutron–proton total effective mass

splitting m�
n�p ¼ ð0:41� 0:15Þd at saturation density was

obtained [11].Within its still large uncertainty range, it agrees

with the BHF prediction of Ref. [6] and the findings of Ref.

[14] that the total effective mass of neutrons is larger than that

of protons in neutron-rich matter. Moreover, a recent analysis

of giant resonances in 208Pb [31] also found a value of m�
n�p

consistent with this result.

4 Neutron–proton effective E-mass splitting
from electron-nucleus scatterings

The E-mass is related to the lifetime of quasi-particles in

nuclear matter [1, 32]. Interestingly, the Migdal–Luttinger

theorem [33, 34] connects the nucleon E-mass directly

with the discontinuity ZJ
F � nJkðkJF�0Þ � nJkðkJFþ0Þ of the

single-nucleon momentum distribution nJk at the Fermi

momentum kJF illustrated in Fig. 4 via

M
�;E
J =M ¼ 1=ZJ

F: ð11Þ

In several recent studies [12, 35, 36], a phenomenological

nJk of the form

nJkðq; dÞ ¼
DJ þ bJI jkj=kJF

� �
; 0\jkj\kJF;

CJ kJF=jkj
� �4

; kJF\jkj\/Jk
J
F:

8<
:

ð12Þ

has been used. The DJ measures the depletion of the Fermi

sphere at zero momentum with respect to the free Fermi

gas (FFG) model prediction, while the bJ is the strength of

the momentum dependence Iðk=kJFÞ of the depletion near

the Fermi surface. The parameters DJ , CJ , /J and bJ
depend linearly on d according to YJ ¼ Y0ð1þ Y1sJ3dÞ as

indicated by microscopic many-body theories

[5, 51, 52, 53]. The amplitude CJ and the cutoff coefficient

/J determine the fraction of nucleons above the Fermi

surface. As discussed in detail in refs. [12, 35, 36], except

the bJ , all other parameters are constrained by experiments

measuring the strength and isospin dependence of nuclear

short range correlations (SRC) using electron-nucleus

scattering at the Jefferson National Laboratory, see, e.g.,

[37, 38, 39], and applying Tan’s adiabatic swipe theorem

[40, 41, 42] to the equation of state of pure neutron matter

calculated using the state-of-the-art microscopic theories

[43, 44, 45, 46, 47, 48, 49, 50].

For symmetric nuclear matter (SNM), M
�;E
0 =M �

2:22� 0:35 was extracted using the Migdal–Luttinger

theorem from the constrained phenomenological momen-

tum distribution [12]. Shown in Fig. 5 is a comparison of

this value in comparison with earlier predictions using (1) a

semi-realistic parametrization through a relative s-wave

exponential nucleon-nucleon interaction potential (red dash

line) [54], (2) a Green’s function method considering col-

lective effects due to the coupling of nucleons with the

low-lying particle-hole excitations of the medium (green

solid line) [55], (3) a correlated basis function (CBF)

method using the Reid and Bethe-Johnson potentials (black

Fig. 3 Energy-dependent isoscalar U0 (left) and isovector Usym

(right) nucleon potentials from analyzing nucleon-nucleus scattering

data. Taken from Ref. [11]

Fig. 4 A sketch of the single-nucleon momentum distribution with a

high momentum tail above the Fermi surface. Taken from Ref. [12]
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and magenta solid lines) [56, 57], (4) two non-relativistic

models with the Paris nuclear potential (purple and red

solid line) [58, 59], (5) a low density expansion of the

optical potential (orange solid line) [60] and (6) a rela-

tivistic Dirac-Brueckner approach (dash black line) [61],

within the uncertain range of the b0 parameter. It is seen

that the variation of M
�;E
0 =M with b0 is rather small.

Clearly, the predictions are rather diverse. The E-mass for

SNM extracted from applying the Migdal-Luttinger theo-

rem to the constrained phenomenological momentum dis-

tribution appears to be closer to the BHF prediction by

Baldo et al. [59].

In isospin asymmetric matter, the neutron–proton E-mass

splitting generally can be expanded in terms of d as

M�;E
n �M�;E

p

M
¼ sEdþ tEd

3 þOðd5Þ ð13Þ

where the sE and tE are shown in Fig. 6 within the uncer-

tainty range of the b1-parameter describing the isospin and

momentum dependence of the nucleon Fermi surface. It is

interesting to note that the neutron E-mass is smaller than

the proton E-mass, i.e., M�;E
n \M�;E

p in neutron-rich med-

ium. However, the neutron–proton E-mass splitting suffers

from the large uncertainties due to the poorly known b1-
parameter. To improve the situation, one needs to have

more reliable knowledge about the isospin dependence of

the nucleon momentum distribution around the Fermi

surface. This information may be obtained from experi-

ments measuring the isospin dependence of the nucleon

spectroscopic factors and the SRC strength in neutron-rich

nuclei.

5 Neutron–proton effective k-mass splitting
and isospin dependence of nucleon mean free
path in neutron-rich matter

With the information about the total effective mass and

E-mass, we can infer information about the k-mass from

the relation of Eq. 3. In terms of the reduced mass, i.e., the

dimensionless mass m (M� divided by M, etc), we have

[62]

m�;E
n � m

�;E
0 þ 1

2
sEd;m

�;E
p � m

�;E
0 � 1

2
sEd;

m�;E
n � m�;E

p � sEd;

m�;k
n � m

�;k
0 þ 1

2
skd; m

�;k
p � m

�;k
0 � 1

2
skd;

m�;k
n � m�;k

p � skd:

ð14Þ

Similarly, the linear splitting function s for the total

effective mass can be obtained from the nucleon-nucleus

scattering data as discussed in Sect. 3. Equation 3 then

leads to

sk ¼
1

m
�;E
0

s� sEm
�
0

m
�;E
0

 !
� 0:50� 0:24

m
�;k
0 ¼ m�

0

m
�;E
0

� 0:32� 0:07

ð15Þ

using s � 0:41� 0:15; sE � �2:22� 1:35; m�
0 � 0:7�

0:1 and mE
0 � 2:22� 0:35. We notice that the value of m

�;k
0

is significantly smaller than the empirical value of about

0.6 given in Refs. [1, 5]. The value of sk indicates that the

k-mass has a significant isospin dependence compared to

that of the total effective mass. The positive values of both

s and sk indicate that the total effective mass and the

Fig. 5 The nucleon effective E-mass in symmetric nuclear matter

(blue lines with error bars) at normal density extracted from

phenomenological nucleon momentum distribution constrained by

electron-nucleus scattering data using the Migdal–Luttinger theorem

in comparison with predictions of microscopic theories

[54, 55, 56, 57, 58, 59, 60, 61] within the uncertainty range of the

shape parameter b0. Taken from Ref. [12]. (Color figure online)

Fig. 6 The linear and cubic splitting functions sE and tE at normal

density within the uncertain range of the b1-parameter characterizing

the isospin dependence of the nucleon momentum distribution near

the Fermi surface. Taken from Ref. [12]
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k-mass of neutrons (protons) increase (decrease) with the

isospin asymmetry d, while it is the opposite for the E-mass

of nucleons.

The inferred values of the k-mass in SNM, its splitting

for neutrons and protons and their dependence on the iso-

spin asymmetry of the medium have interesting implica-

tions. For example, the k-mass affects the nucleon MFP k
and it was found necessary to explain qualitatively the

observed large values of k for protons in SNM [32]. It was

emphasized that the space non-locality is as important as

the Pauli blocking in determining the MFP. In fact, it was

shown quantitatively that estimates using the well-known

expression 1=k ¼ q\r[ where \r[ is the isospin

averaged in-medium nucleon-nucleon cross section cannot

reproduce the experimental observations even if the Pauli

blocking is considered unless the space non-locality

through Mk is also considered. More specifically, the MFP

k in nuclear medium is determined by [32]

k ¼ kR

2M�
k jWðE; kRÞj

ð16Þ

where kR ¼ ½2MðE � UðE; kRÞÞ	1=2 is the real part of the

nucleon momentum and W(E, k) is the imaginary part of

the potential. A reduced k-mass increases the nucleon

MFP. Since the symmetry potential is repulsive (attractive)

and the k-mass increases (decreases) for neutrons (pro-

tons), the kR
2M�

k

factor increases (decreases) for protons

(neutrons) with the same energy as the isospin asymmetry

d increases. While existing analyses of nucleon-nucleus

reaction data have not firmly established the isospin

dependence of the imagine optical potential, recent many-

body perturbation theory using chiral effective forces has

clearly verified the Lane form of the imaginary potential

[63]. Moreover, the magnitude of the isovector part of the

imaginary potential is appreciable compared to that of the

real potential for nucleon energies below about 200 MeV.

Obviously, whether protons have longer MFP than neu-

trons in neutron-rich medium depends on the isospin

dependence of all three factors determining the k in Eq. 16.

Previously, using a relativistic impulse approximation

without considering the space non-locality, it was found

that neutrons have a longer MFP than protons with kinetic

energies less than about 600 MeV, while it is the opposite

at higher kinetic energies [64]. In another study using a

kinetic model considering the isospin dependence of both

the Pauli blocking and nucleon-nucleon cross sections, but

not the space-time non-locality necessary to reproduce the

experimental observations [32, 65], it was found that

neutrons always have longer MFP than protons [66]. More

recently, using the definitions of 1=kp ¼ qprpp þ qnrpn and
1=kn ¼ qnrnn þ qprnp with the in-medium nucleon-nu-

cleon cross sections calculated within the DBHF approach,

neutrons are found to have longer MFP than protons at

kinetic energies less than about 300 MeV and the effect

increases with the isospin asymmetry. At higher energies,

however, neutrons and protons have approximately the

same MFP [67]. Thus, overall, we are still seeing rather

model-dependent predictions regarding the isospin and

energy dependence of the nucleon MFP in neutron-rich

matter, while significant progress has been made in recent

years. Further progress requires more complete knowledge

about the isospin dependence of nucleon k-mass and its

imaginary potential in neutron-rich matter.

6 Summary

In summary, due to the space-time non-locality of

nuclear interactions single-nucleon potentials are momen-

tum and/or energy dependent. Three distinct nucleon

effective masses are normally used to character the

momentum/energy dependence of nucleon potentials. How

do they depend on the density and isospin asymmetry of

the medium? How are they different for neutrons and

protons? These have been among the longstanding ques-

tions in nuclear physics. Answers to these questions have

many interesting ramifications in both nuclear physics and

astrophysics. In this talk, we briefly reviewed some of our

recent efforts to answer these questions. In particular, we

showed that the total effective mass M�
J for neutrons is

higher than that for protons in neutron-rich matter at sat-

uration density based on a comprehensive analysis of

existing nucleon-nucleus scattering data, while the E-mass

M
�;E
J for neutrons is less than that for protons in neutron-

rich matter from applying the Migdal-Luttinger theorem to

a phenomenological single-nucleon momentum distribu-

tion in nuclei constrained by recent electron-nucleus scat-

tering experiments. Combining information about the

isospin dependence of both the nucleon total effective mass

and E-mass, we inferred the isospin dependence of nucleon

k-mass. The latter is important for determining the nucleon

MFP in neutron-rich matter. We also noticed some open

questions regrading the nucleon effective masses to be

further explored both theoretically and experimentally.
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