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Abstract An improved thermometer (TIB) is proposed for

intermediate-mass fragments via the difference between

isobaric yield ratios. The residual free energy of three

isobars is replaced by that of the binding energy. The

measured fragments in the 140A MeV 40, 48Ca ? 9Be

(181Ta) and 58, 64Ni ? 9Be (181Ta) reactions are analyzed to

obtain TIB ranging from 0.6 to 3.5 MeV. TIB is suggested to

be a direct determination of temperature avoiding the fit-

ting procedure.

Keywords Temperature � Intermediate-mass fragment �
Isobaric ratio

1 Introduction

The measured fragments in heavy-ion collisions have a

lower temperature than the primary fragments which are

formed in the hot source. The Albergo isotopic ther-

mometer has been used to extract the temperature based on

the yields of protons, neutrons, and some light isotopes [1].

Also, the isotopic thermometer has been used to extract the

temperature of larger isotopes, such as the carbon isotopes

[2, 3] and intermediate-mass fragments (IMFs) [4, 5].

Other methods employed to study this temperature in

heavy-ion collisions include the thermal energy method

[6], excitation energy method [7], momentum fluctuation

method [8], the correlation of two-particle relative moment

[9], and kinetic energy spectra of light particles [4].

Recently, the isobaric ratio method has been proposed to

extract temperature for IMFs [10].

In the thermodynamic models, temperature is one part of

the probes and cannot be separated easily. In the isobaric

yield ratio method, the symmetry energy coefficient is

studied by using its ratio to the temperature (asym/T) for

neutron-rich nucleus [11]. In this article, an improved

thermometer is proposed to extract T of the IMFs which is

based on the IYRs [12, 13].

2 Methods

Here, the canonical ensemble theory is adopted. Based

on the grand-canonical limitation, the cross section r(A, I)
of a fragment has the form of [14]

rðA; IÞ ¼ CAs expf½�FðA; IÞ þ lnN þ lpZ�=Tg; ð1Þ

where C and s are constants; T is the temperature,

I = N - Z is the neutron excess; ln(lp) is the chemical

potential of neutron (proton); and F(A, I) is the free energy

of a fragment, which can be parameterized as the T-de-

pendent mass formula [10, 15–18].

The IYR is defined between the yield of isobars with I

and I - 2

lnRðA; I; I � 2Þ ¼ ln
rðA; IÞ

rðA; I � 2Þ

� �

¼ ½FðA; I � 2Þ � FðA; IÞ þ Dl�=T ;
ð2Þ

where Dl = ln - lp. Similarly, for isobars with I ?2 and

I, one has
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lnRðA; I þ 2; IÞ ¼ ln
rðA; I þ 2Þ
rðA; I � 2Þ

� �

¼ ½FðA; IÞ � FðA; I þ 2Þ þ Dl�=T : ð3Þ

Dl/T for fragment changes very small, which has been

shown in an isobaric ratio difference method [19–25],

Thus, Dl/T can be canceled out in the difference between

isobaric yield ratios,

lnRðA; I þ 2; IÞ � lnRðA; I; I � 2Þ
¼ ½2FðA; IÞ � FðA; I � 2Þ � FðA; I þ 2Þ�=T:

ð4Þ

The residual free energy is defined as DF : 2 F(A,

I) - F(A, I - 2) - F(A, I ? 2). If DF is known, T can be

obtained. It has been proven that within the finite temper-

ature range, DF between two isobars can be replaced by

that of the binding energy for the fragments [13]. Follow-

ing the assumption in Refs. [12, 13], the residual free

energy DF can be replaced by the residual binding energy

DB = 2 B(A, I) - B(A, I - 2) - B(A, I ? 2). From

Eq. (4), the improved method to extract T based on the

difference between IYRs (labeled as TIB) is

TIB ¼ 2BðA; IÞ � BðA; I � 2Þ � BðA; I þ 2Þ
lnRðA; I þ 2; IÞ � lnRðA; I; I � 2Þ : ð5Þ

where DlnR = lnR(A, I ? 2, I) - lnR (A, I, I - 2) is

defined for simplification. The binding energy in the

AME12 will be adopted in the analysis [26].

3 Results and discussion

The fragments in the 140A MeV 40, 48Ca ? 9Be (181Ta)

and 58, 64Ni ? 9Be (181Ta) reaction are adopted to verify

the TIB method. They were measured by Mocko et al. [27]

at the National Superconducting Cyclotron laboratory,

Michigan State University.

DB and DlnR will be discussed separately, beginning

with the distributions of DB for fragments in the

140A MeV 40, 48Ca ? 9Be and 58, 64Ni ? 9Be reactions

(Fig. 1). For the I = 1 fragments, DB increases almost

monotonically with A, while for fragments of I = 3, 5, 7,

DB staggers on the relative small A side. The staggering

in DB becomes smaller for the A[ 33 fragments. DB for

the I = 9 fragments shows a small staggering, but the

staggering is more evident for the A[ 47 fragments.

Secondly, DlnR for related isobars in the 140A MeV
40, 48Ca ? 9Be (181Ta) and 58, 64Ni ? 9Be (181Ta) reactions

is plotted in Fig. 2. For the I = 1 fragments, DlnR almost

keeps constant on the small A side, but increases with A at

A[ 40, with some staggering at A[ 30. For the fragments

of I = 3, 5, 7, an obvious staggering appears in DlnR on the

small A side, but it staggers little when A is relative large.

The target (9Be and 181Ta) shows very little influence on

DlnR. In general, the distribution of DB and DlnR is similar

in shape.

Finally, we use DB and DlnR in 140AMeV 40, 48Ca ? 9Be

(181Ta) and 58, 64Ni ? 9Be (181Ta) reactions to calculate TIB
(Fig. 3). TIB for the I = 1 fragments is almost constant at

1.5 MeV. TIB for I = 3 staggers for small A fragments, but

becomes small and constant at A[35. TIB for I = 5 stag-

gers, too, in a small manner though. But the staggering

becomes larger again for I = 7 and I = 9 fragments. For

most of the I[3 fragments, the TIB values range from 0.6 to

3.5 MeV, which agrees with the temperatures extracted by

the IYR method [12, 13]. Only for some fragments of very

rich neutrons, the TIB values are large. This agrees with the

results in the canonical ensemble theory to estimate the mass

of neutron-rich copper isotopes at T = 2.2 MeV [14]. Great

difference can be seen between the TIB values for the reac-

tions using 9Be and 181Ta targets when I is large (I = 7 and

9), showing obvious target effect.

4 Summary

An improved isobaric ratio thermometer (TIB) for

intermediate-mass fragments has been proposed based on

the difference between IYRs, in which the residual free

energy is replaced by the residual binding energy among

these isobars. In contrast to the IYR thermometer, TIB is

directly obtained from the yields of fragments and avoids

the fitting procedure, which serve as a direct probe of

temperature. TIB of the odd I fragments in the 140 MeV
40, 48Ca ? 9Be (181Ta) and 58, 64Ni ? 9Be (181Ta) reactions

has been obtained. The values of TIB for most considered

IMFs are low. There is some inference that for similar

reactions with different asymmetries, TIB can be assumed

Fig. 1 (Color online) DB for the fragments in the 140A MeV
40, 48Ca ? 9Be (181Ta) and 58, 64Ni ? 9Be (181Ta) reactions
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as the same, so the assumption is reasonable that the

temperatures in two similar reactions are similar.
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