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Abstract Deformed even—even nuclei Barium isotopes
with quadrupole—octupole deformations are investigated on
the basis of a collective model. The model describes energy
levels of the yrast band with alternating parity in the neu-
tron-rich 140:142,144,146,148B4 The structure of the alternating
parity bands is examined by odd—even (Al = 1) staggering
diagrams. An analytical method of the collective model is
proposed for the calculation of E2 transition probabilities

in alternating spectra of the nuclei 40:142:144,146g5

Keywords Collective Hamiltonian - Quadrupole—octupole
deformations - Staggering effect - Electric transition
probability

1 Introduction

In atomic nuclei, the simultaneous manifestation of
quadrupole and octupole degrees of freedom is correlated
with typical spectroscopic characteristics of nuclear col-
lective motion. The quadrupole mode can be applied in all
regions of deducing vibrational, rotational, and transitional
structures of the spectra. The display of octupole degrees of
freedom is superposed in some regions. This leads to
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complicated shape properties and parity effects in the
spectrum of the system [1].

It is commonly thought that the core issue of quadrupole—
octupole collectivity is to resolve the breaking of reflection
symmetry [2], this is chiefly because of the difficulty in
determining the total inertia tensor of the system. Based on
this situation, if simplifying assumptions that the axial
symmetry is still preserved and the octupole deformations
are fixed suitably with the principal axes of the quadrupole
shape, both degrees of freedom are separated adiabatically.
In situations like this, the collective motion can be related to
the reflection asymmetric shape in reference to an octupole
variable in a double-well potential [3], and the tunneling
through the potential barrier can reasonably explain the
parity shift effect observed in nuclear alternating parity
bands. The above concept has been generalized for the case
of simultaneously contributing quadrupole and octupole
modes. The double-well potential was defined in accordance
with a variable bringing contribution to not the absolute
values of each deformation variables, but the different
degrees of freedom [4]. In this way, the explicit form of the
original potential according to the quadrupole and octupole
deformation variables was not given. Another important
issue is, if and to what extent, one may take into account a
tunneling effect existed in the space of the octupole variable,
p5, after the quadrupole coordinate, f3,, is made to vary. In
order to clarify the above question, it has proposed a col-
lective model [5] for the quadrupole—octupole vibration and
rotation motion of even—even nucei.

The purpose of the present work is to apply this theo-
retical model to explain the properties of quadrupole—oc-
tupole deformations [6-8] in even—even nuclei: barium
isotopes [9-12]. It can also obtain basic characteristics of
energy levels, parity shift, and electric transition properties
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in nuclei (140:142:144.146.14884y [13] with collective bands

built on coherent quadrupole—octupole vibrations.

2 Theoretical descriptions

Now we begin with a brief review of the theoretical
framework. The quadrupole—octupole Hamiltonian [14] for
the collective motion is given by

qu:_Z_Bza_ﬁ%_TBsa_ﬁ%Jr U(By, B3, 1), (1)

and the potential is
X(1)
doff; + dsp3

with X(I) = I(I + 1)/2. Here I is the collective angular
momentum, f, and fi; are the axial deformation variables,
B, and B; are the mass parameters, C, and C; are the
stiffness parameters, and d, and d; are the moment of
inertia parameters. The last term in Eq. (2) is a coupling
between quadrupole and octupole degrees of freedom.

If a condition for the simultaneous presence of nonzero
coordinates of the potential minimum is applied, the iner-
tial and stiffness parameters are correlated as
dy/Cy = d3/C5. On this occasion, the potential bottom is
an ellipse that surrounds the internal potential core. If the
prolate quadrupole deformation f3, >0 is taken into
account, the motion in the octupole coordinate between
positive and negative f; values along the ellipse sur-
rounding the potential core. And it also uses polar variables
B2 = peos(0)//d:Jd, and s = psin(0)/\/d:/d, with
d = (d2 + d3)/2. According to the above condition, the
potential energy hinges on the deformation variable, p, and
on the angular momentum, /, and not on the angular vari-
able, 0. The potential is expressed as

1 X(I)

Ui(p) = ECPZ + e 3)

U(B,, B3:1) =%C2ﬁ§+%c3ﬁ§+ (2)

where C is defined as 1/C = d,/(dC;) = d3/(dCs). Then
we assume that the quadrupole and octupole modes in the
collective motion have the same oscillation frequencies.
Then the mass and inertia parameters have the relation
1/B = d,/(dB,) = d3/(dB3). The model Hamiltonian and
the quadrupole—octupole oscillation wave function are
obtianed. and the wave function can be taken in a separable
form ¢(p,0) = Y (p)p(0). The Schrédinger equation is
separated into two equations for the variables p and 6

10 2B K K2

S0+ W) + 75 [~ Uilp) — o

29p 2B Y(p) =0;

(4)
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2
a—z(p(e) + K p(0) =0, (5)
a0

where k is the separation quantum number. Equation (4)
with the potential (3) is similar to the equation for the
Davidson potential [15, 16], which is analytically solvable.
Equation (4) is solved analytically and gets the explicit
expression for the energy spectrum [17]

Eni(l) = i [En NI/ bX(I)] , (6)

where @ = /C/B,n=0,1,2,...,and b = 2B/(h>d). The
eigenfunctions (p) are obtained in terms of the Laguerre
polynomials

0o =\ [y e e P ), )

where a = v/BC/h and v = (1/2)+/k? + bX(I). Under the
boundary condition ¢(n/2) = ¢(—n/2) =0, the Eq. (5)
has two different solutions with positive and negative
parities, 7, = (+) and m, = (—), respectively, ¢*(0) =
V2/mcos(k0),k = £1,+£3,45---; ¢~ (0) = \/2/nsin
(k0),k = £2,4+4,+6---. The lowest states of the system
in the variable 6 is considered, one has k = k, = 1 for ™
and k = k_ = 2 for ¢ . With the parity dependent number,
k, the Eq. (6) determines the structure of an alternating
parity spectrum. The energy levels E, x(I), with n = 0, are
equal to the yrast alternating parity sequence. With n # 0,
the levels are equal to higher energy bands, in which the
rotation states are built on quadrupole—otcupole vibrations
of the system.

The odd-even staggering [18-20] is referred to as a
zigzagging behavior of the nuclear inertial parameter
between the odd and even angular momentum states of a
rotation band. It provides some information about the fine
structure of the nuclear collective spectrum in different
regions of the nuclear chart. The odd-even staggering
patterns can be determined as

Stg(I) = E(I +3) — 4E(I +2) + 9E(I + 1)

(8)
— 10E(I) + 5E(I — 1) — E(I - 2).

The model formalism which allows the calculation of E2
transition probabilities for the energy spectra in the system
with coherent quadrupole—octupole motion is widely
applied to even—even nuclei. Then we give the formulas for
calculation of E2 transition probabilities [5] between levels
with |n;l;) and |ngl;)

B(E2,I; — Iy) = by(I;020|1,0)>S*(E2,I; — /), (9)

where b, is scaling constant related to effective charges,
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Fig. 1 Theoretical and
experimental energy levels (left)
and staggering patterns (right)
for the alternating parity bands
in 140.142,144,146,148 5
Experimental data are taken
from Refs. [9, 22], the
theoretical results are obtained
by Egs. (6) and (8), respectively
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Fig. 2 The values of theoretical and experimental transition proba-
bilities (B(E2;1+2 — I), here I =0) in the alternating parity
spectrum of Barium isotopes !40142144146B3 (the values of the
parameter a are 0.327,0.324,0.272,0.239). Experimental data from
Ref. [10]. The theoretical results are obtained by Eqgs. (9) and (11)

+00
S(E2,1; — &) = /O dpyr (p)p* Wy (p). (10)

3 Results and discussion

The descriptions of the alternating parity spectra in the
nuclei 140:142,144146,148B 4 are obtained by taking the theo-
retical energy levels Eoi(I) = Eox(I) — Egx(0) from
Eq. (6). X(I) =3[do + I(I +1)], where the parameter d
indicates the characteristic of the potential (U(f,, f3,1)) in
the ground state. According to the respective experimental
data, the parameters w, b, and dj have been adjusted to the
energy levels by means of a least squares minimization
procedure. In the left column of Fig. 1, the obtained
numerical results for the energy levels of 140:142,144,146,148 g 4
are compared with experimental data.

The staggering patterns illustrate that the even and odd
angular momentum sequences approach each other toward
higher angular momenta. However, the decrement of the
staggering amplitude is not enough to provide an octupole
band structure at angular momenta. For the nuclei
140,142,144,146,148B 5 we observed this staggering effect. The
respective experimental and theoretical staggering patterns
are compared in the right column. In Fig. 1, it is illustrated
that the experimental patterns demonstrate the predicted
behaviors of alternating parity levels with increasing
angular momentum in the nuclei '40:142:144.146,148 5

Considering in the case of transitions between states of
the yrast alternating parity band, |0/;) and [0f) (with
n; = ny = 0), the integrals in Eq. (10) have an analytic
expression [21]

@ Springer

1 C(vi+vr+3)

S(E2, 1 — Iy) = — : 1
( )= VT + DI2v + 1) ()
where a = v/BC/h,v; = (1/2)\/k} + bX(I;), and

v = (1/2) k} + bX(Iy). This formalism can be applied

for an analysis of the electric transition rates in spectra
where the collective quadrupole—octupole dynamics carry
the characteristics outlined in the above cases. We calcu-
late the E2 reduced transition probabilities in the spectra of
140,142,144,146B 4 where the available experimental data
allow to get information about the angular momentum
dependence of these quantities. Due to the scarce experi-
mental data, the B(E2) value of *Ba was not calculated.
The theoretical transition values have been determined
after fitting the parameter a in Eq. (11). The scaling (ef-
fective charge) parameter, b, in Eq. (9) has been set equal
to 1. The specific instructions of parameter, a, and constant,
b,, are given in the fifth part of the Ref. [5]. In Fig. 2, the
vertical coordinate is the value of the theoretical and
experimental transition probabilities (B(E2;2T — 07)) in
the alternating parity spectra of barium isotopes. On the
horizontal coordinate, the different number of neutrons
signify the different barium isotopes (140:142.144.146B3) The
calculated results are compared with experimental data in
Fig. 2. There are also some discrepancies between theory
and experiment in the E2 transition values in 14214414685,

4 Summary

In summary, we have shown accurately the energy
levels and the staggering patterns in the nuclei
140,142,144,146,148B,  as displayed in Fig. 1. From the fig-
ure we can see that the staggering patterns show the even
and odd angular momentum sequences approach each other
toward higher angular momenta. It signifies a trend for the
forming of an octupole band in even—even nuclei: barium
isotopes. The results for E2 transition probabilities in
nuclei 401421441468, (Fig. 2) suggest further analysis of
additional experimental data and tests of the formalism.
The current analysis shows that, in this case, the coherent
contribution of quadrupole and octupole oscillations can
occur in the collective motion of nuclei.
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