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Abstract  The point-reactor model with power reactivity feedback becomes a nonlinear system. Its dynamic 

characteristic shows great complexity. According to the mathematic definition of stability in differential equa-

tion qualitative theory, the model of a reactor with power reactivity feedback is judged unstable. The equilib-

rium point is a saddle-node point. A portion of the trajectory in the neighborhood of the equilibrium point is 

parabolic fan curve, and the other is hyperbolic fan curve. Based on phase locus near the equilibrium point, it is 

pointed out that the model is still stable within physical limits. The difference between stabilities in the 

mathematical sense and in the physical sense is indicated. 
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1 Introduction 

The point-reactor model with power and tem-

perature reactivity feedback is a nonlinear system of 

complex dynamic characteristics. Stability of several 

models taking no delayed neutrons into account was 

analyzed by FU Longzhou[1] with Lyapunov method. It 

is well known, however, that Lyapunov function is 

difficult to construct.  

Moreover, resolution of the point kinetic equation 

with temperature feedback can be found only under 

certain assumptions[2-4]. CHEN Wenzhen[5] analyzed 

the point-reactor neutron-kinetics equation under the 

conditions of small step reactivity (ρ0<β) and tem-

perature feedback. Let d2C/dt2=0, he derived the ana-

lytic expressions of the reactivity and output power 

with time for any initial power.  

In this paper, a model based on the mathematic 

definition of stability in differential equation qualita-

tive theory is analyzed. Single group of delayed neu-

trons and power reactivity feedback are taken into ac-

count. The difference between stabilities in the 

mathematical sense and in the physical sense is ex-

plained in terms of phase locus near the equilibrium 

point. 

2 Stability analyses 

The neutron kinetics equations of one group are 

given by 
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where n is the neutron density or the reactor power, C 

is the average density of delayed neutron precursors,  

is the reactivity, λ is the radioactive decay constant of 

delayed neutron precursors,  is the prompt neutron 

lifetime and β is the total fraction of the delayed neu-

tron. 
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The general relationship between reactivity feed-

back and power is ρ=ρ0–αn, where ρ0 is inserted reac-

tivity, and α > 0. There are two equilibrium points of 

the system. One is (n, C) = (0, 0) and ρ is arbitrary. 

The other equilibrium point is (n, C) = (ρ0/α, 

ρ0β/(λαand ρ=0.  

While the inserted reactivity 0 = 0, two equilib-

rium points coincide with each other. This condition is 

discussed as follows. 

Substituting ρ = –αn into Eq.(1) gives 
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Let a= –β/Λ and b=, we have the corresponding 

linear equations 
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Let A denote the coefficient matrix of Eq.(3). The 

eigenvalues of A are 0 and a–b. Because one of the 

eigenvalues is zero and the other is negative, the sta-

bility of Eq.(2) cannot be determined directly, but it 

can be judged that some center manifolds exist in 

Eq.(2), and the stability of Eq.(2) on the center mani-

fold is equal to its own stability. Therefore it is neces-

sary to transform A into a diagonal matrix firstly. 

Nondegenerate linear transformation  

TT yxPCn ),(),(                   (4) 

is used to obtain P-1AP =J, where 
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Substituting Eq.(4) into Eq.(2), one gets 
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Since there is a local center manifold y=h(x) and 

h(0)=h΄(0)=0, we can assume that 

)( 33
3

2
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where O(x3) is an infinitesimal, which is in an order of 

greater than three. Substituting Eq.(6) into 

2d d d
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and comparing the homogeneous items of both sides 

of the equation with each other, we can get the solu-

tion of coefficients h2 and h3. But it is unnecessary in 

this condition. We can substitute Eq.(6) into the first 

line of Eq.(5) directly and yield the equation on the 

center manifold 
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It is clear that x is a sign reversal function and 
2

2 2
2

d
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t a
  is negative definite. Then, Eq.(2) 

is unstable on the center manifold, and unstable in it-

self as well. The result seems to disagree with existing 

engineering knowledge. The negative reactivity in-

creases with the nuclear power and in turn reduces the 

nuclear power, that is, the system is stable. But atten-

tion should be paid to the difference between stabili-

ties in the mathematical sense and in the physical 

sense. In order to explain the difference in detail, we 

analyze the phase locus of Eq.(2) in the phase plane 

n–C as follows. 



378 NUCLEAR SCIENCE AND TECHNIQUES                                   Vol.19 

 

3 Phase locus analysis 

Let y = z/(a–b) and τ= (a–b)t, Eq.(5) becomes 
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The explicit expression z(x) can be derived from the 

following equation 

0),(  zxz                      (8) 

Because z(0) = z′(x) =0, it can be supposed that 
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Combining Eq.(9) and Eq.(8), we can determine 

the coefficient αi(i=2, 3···) and get 




 3
3

32
2

2

2

)(

2
)( x

baa

bk
x

b

ka
xz  (10) 

Substituting Eq.(10) into ( , )x z gives 
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Because the minimum order of ( , ( ))x z x  is 

even, the equilibrium point O is a saddle-node point. A 

portion of the trajectory of (7) in the neighborhood of 

the equilibrium point O is parabolic fan curve, and the 

other is hyperbolic fan curve (Fig. 1). For 

kb2/[(a–b)a2]>0, the parabolic fan curve is in the right 

half plane[6]. 

 

 

 

 

 

 

 

 

 

 

Fig.1  The trajectory distribution pattern of system in the 
neighborhood of equilibrium point in x–z plane. 

Since n = –bx/a + y, C= x–z, and y =z/(a–b), x and 

z axis in x–z plane are converted into lines of C= –an/b 

and C= –n in the n–C plane, as dashed lines shown in 

Fig. 2. Attention should be paid to τ= (a–b)t, and τ→ 

–∞ while t→ +∞. Thus，as shown in Fig. 2, four tra-

jectories which trace out from point O tangent to x  

axis in x–z plane, are transformed into the other four 

trajectories which get into point O tangent to line C = 

–an/b in n–C plane. Two trajectories, which trace out 

from point O tangent to z axis, are transformed into the 

other two trajectories which get into O tangent to line 

C = –n. The saddle-node boundary, which gets into 

point O tangent to X axis, is transformed into the sad-

dle-node boundary which traces out from O tangent to 

line C = –an/b. 

 

 

 

 

 

 

 

 

 

 

 

Fig.2  The trajectory distribution pattern of system in the 
neighborhood of equilibrium point in n–C plane. 

From Fig. 2, the difference between stabilities in 

the mathematical sense and in the physical sense can 

be found clearly. The equilibrium point O(0,0) is un-

stable in the mathematic sense when the definition 

domain of n and C is the whole real domain. The equi-

librium point is still stable when n and C limited 

within n≥0 and C≥0 where there is real physical 

meaning. The equilibrium point becomes unstable 

when n and C are permitted to diverge towards nega-

tive infinity.  

4 Conclusions 

The characteristic of neutron kinetics equation is 

usually studied by obtaining the resolution under spe-

cial condition or getting the numeric solution[2-4]. 

Qualitative analysis of point kinetic equations as 

above is quite different from those methods. We can 
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grasp the characteristic of point kinetic equation as a 

whole by this method. It offers reference for analysis 

of the point kinetic with another form of reactivity 

feedback such as ρ = ρ0–αT and dT/dt =Kn. 
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