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Abstract  The K-V beam through a hackle periodic-focusing magnetic field is studied using the particle-core model. 

The beam halo-chaos is found, and a power function controller is proposed based on mechanism of halo formation and 

strategy of controlling halo-chaos. Multiparticle simulation was performed to control the halo by using the power 

function control method. The results show that the halo-chaos and its regeneration can be eliminated effectively. We 

also find that the radial particle density evolvement is of uniformity at the beam’s centre as long as appropriate 

parameters are chosen. 
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1 Introduction 

High intensity particle beams are utilized widely 

due to their attractive features in possible applications, 

such as clean activity nuclear power systems, nuclear 

physics, and medical radioisotope production. The 

halo of a particle beam, however, may reduce the 

accelerator efficiency, and cause damages to human 

body and the environment. It is necessary to control 

the halo-chaos based on mechanisms of halo formation 
[1-3] and strategy of chaos control [4-8].  

At present, according to stability analysis for the 

dimensionless envelope equation of the beam 

propagating through a periodic-focusing field, using 

the Poincare-Lyapunov theorem [4], some nonlinear 

feedback functions have be proposed to control the 

halo-chaos, and the particle-in-cell (PIC) simulations 

have shown that these controllers are effective in 

suppressing beam halo-chaos [5-14]. However, these 

studies focused on the beam via a rectangle 

periodic-focusing channel or a uniform-focusing 

channel. In fact, a hackle periodic-focusing magnetic 

field is close to practical condition in a high current 

accelerator. So studying the beam propagating through 

the hackle periodic-focusing field is valuable and 

realizable in engineering application. In this work, 

halo-chaos of a beam in a hackle periodic-focusing 

magnetic field was studied, and a power function for 

controlling the halo was proposed. Multiparticle 

numerical simulations were performed. The results 

show clearly that the power function control method is 

effective. 

2 Numerical methods 

For simulation studies of time evolution of 

charged-particle bunches in an accelerator, the self- 

consistent treatment of space-charge forces in beam 

macro-particles is needed necessarily for describing 
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quantitatively the beam dynamics. The charged- 

particle dynamics in an accelerator can be described 

by the Vlasov equation[7]: 
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where f  is the particle distribution in phase space, 

r  is the spatial position, and ext scp F F F    is 

the momentum. The F includes the contributions from 

both the external periodic focusing fields (Fext) and the 

space-charge force Fsc. The space-charge force in this 

equation is a mean-field approximation of the N-body 

microparticle Coulomb force. In the moving frame, the 

space-charge force can be obtained from the solution 

of Poisson’s equation: 

        0
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where  is the electrostatic potential in the moving 

frame,  is the particle spatial charge density, 0 is the 

vacuum permittivity. The charge density can be 

calculated from the distribution function f by 
3( ) d ( , )r pf r p   . When using z as the independent 

variable, ( ) ( , , )sr x y s  . 

Then the Poisson-Vlasov equations can be solved 

using the PIC approach for simulation of beam 

dynamics in a linac. Of course, the motion equations 

of the particles must satisfy the Maxwell equations in 

electromagnetic fields. So far, the PIC program has 

been developed in the transverse electromagnetic field, 

and the beam halo-chaos formation and the halo-chaos 

control in the four-dimensional phase space has been 

simulated [5-9]. 

The particle-core model has been used widely to 

investigate the beam halo-chaos. The model assumes 

that the Kapchinsky-Vladimirsky (K-V) beam is round 

and continuous, and the dimensionless nonlinear 

equation of the beam envelope and the transverse 

equations of motion for a single particle in a 

periodic-focusing system are[2,3] 
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where rb is the beam radius and s=vt is the axial 

coordinate, in which v is the axial velocity of the beam 

particles, K is a measure of the beam self-field, c is the 

speed of light; b=v/c, γb=(1–βb
2)1/2 is relativistic mass 

factor, q and m are the particle charge and rest mass, 

respectively; s (x, y, s) is the self-electric potential. 

The periodic function z(s) characterizes the strength 

of the periodic-focusing exterior magnetic field in 

Fig.1, z(s)=z(s+S), in which S is a period. 

In the particle-core-interaction model, the 

self-field force acting on a particle is given by 

 , ,s
rF q x y s   .                 (7) 

The radial space-charge field of an axis-symmetric 

beam is calculated from the Gauss law by counting the 

number of particles in cells of a finite radial grid, 

which extends up to five times of the beam matched 

radius in a multi-particle simulation. 

 

 

 

 

 

 

 

 

 

 

Fig. 1  Periodic function z(s). 

The nonlinear feedback control method is 

proposed on the basis of the general strategy of chaos 

control. The approach is to apply a nonlinear feedback 

controller G to the right-hand side of Eq.(7), that is 

 , ,s
rF q x y s G    .              (8) 

It is critical to select an effective controller G to 

control the halo-chaos in PIC simulations. In this work, 

we use the power function having a strong nonlinearity 

and excellent localization property, namely 

2

1
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x
xf  ,                           (9) 

and the power function controller G is designed as 
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where rrms is the average root-mean-square radius, am 

is the matching radius. When rrms–am→0, G=0. 

Therefore, the purpose of controlling halo is achieved.  

3 Results and discussion 

The particle-in-cell (PIC) simulation was used to 

study the beam under a hackle periodic-focusing 

channel. The main parameters were:  

the total number of particles, 5×105,  

the vacuum phase advance 0＝115°,  

filling factor ,  

tune-depression η =0.80, η = (am
20)

-1 is the 

strength of space-charge effect, and  

mismatch factor M=1.5, which gives the ratio 

of the initial beam radius to the matched radius.  

From the calculation, we had the matched radius 

am= 0.7891642 and perveance K=0.9032079. The 

evolution periodic steps are 1800. The numerical 

simulation results are shown below. 

3.1 Comparison of statistical variables of beams 

In the simulation, the halo-chaos strength factor H is 

defined. It is the ratio of particles outside the 1.75 am 

to the total particles. H is a measure of the halo control. 

As shown in Fig.2, H is not zero before controlling. 

See curve (a). This means that the halo exists all times 

without the halo control. But after By controlling the 

halo, H is zero see line (b).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2  The halo-chaos strength factor H vs. time s before (a) 
and after (b) controlling the halo-chaos. 

The evolution of root-mean-square radius rrms is 

irregular before controlling the halo (curve (a) in 

Fig.3). After controlling the halo by the power 

function controller, the amplitude of rrms becomes 

small (b in Fig.3). These indicate that the tendency of 

particles escaping from the core is controlled 

effectively by the power function controller. 

3.2 Radial density in high-intensity particle beam 

In order to understand how the beam move in the 

hackle periodic-focusing system and how the halo can 

be better controlled, the radial particle density of K-V 

beam was investigated.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3  Evolution of rrms vs. time s before (a) and after (b) 
controlling the halo-chaos. 

When the beam is not under halo control, the 

evolution of radial density of particle beam is in 

disordered state (Fig.4a). In one period, a number of 

particles accumulate disorderly in the area of r < 1.5. 

When 1.5 < r < 2.75，there are just a few particles 

staying on the beam edge. The density curve is in 

peaks. So the radial particle density becomes 

nonuniform over the cross section of beam.  

From the particle-core interaction model, 

space-charge force is linear in the beam core, but now 

the linear force is destroyed rapidly, and the 

space-charge nonlinear effects become dominant. At 

the same time, particles of mismatched beam are 

affected by the external magnetic field. Due to the 

complexity of the force acting on particles, the energy 

exchange between the particles and the core becomes 

smart. Some particles can escape easily from the core 

to form a surrounding halo. 

The halo is suppressed effectively by the power 

function controller; the order state appears at the 

center of the beam. Form Fig.4 (b), one finds that all 

the particles distribute uniformly in the area of r < 0.8, 
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and the radial density of particle beam becomes larger. 

It is the power function controller that can offer a 

transverse force to suppress the emission force of 

particles caused by the space-charge nonlinear effects. 

Thus the tendency of particles escaping from the core 

is restrained, and the loose particles beam is 

compressed to the core of the beam. So the 

nonuniform distribution of the beam before being 

controlled becomes the uniform distribution after the 

halo-chaos is controlled by the power function 

controller [14]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4  Evolution of radial particle density of beam before (a) and after (b) controlling the halo-chaos. 

4 Summary 

From the simulation results, the halo can be 

controlled effectively by the power function controller 

in the hackle periodic-focusing magnetic field, and the 

density uniformity of beam can be found as long as 

appropriate system parameters are chosen. These may 

be of significance for particle beam applications in the 

future. 
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