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Abstract High-energy dual-energy X-ray digital radiog-

raphy imaging is mainly used in the material recognition of

cargo inspection. We introduce the development history and

principle of the technology and describe the data process

flow of our system. The system corrects original data to get a

dual-energy transparence image. Material categories of all

points in the image are identified by the classification curve,

which is related to the X-ray energy spectrum. For the cali-

bration of classification curve, our strategy involves a basic

curve calibration and a real-time correction devoted to

enhancing the classification accuracy. Image segmentation

and denoising methods are applied to smooth the image. The

image contains more information after colorization. Some

results show that our methods achieve the desired effect.

Keywords High energy � Dual energy � Digital
radiography � Material recognition

1 Introduction

The X-ray imaging technique has become one of the most

important tools in customs inspection. Presently, there are

mainly two X-ray imaging modalities: radiography and

computed tomography (CT). Although CT can provide 3-D

structures and an accurate attenuation map of the cargo, its

complexity and high price limit its application [1–3]. X-ray

radiography, including single energy and dual energy, is still

the mainstream technology. The development of X-ray

radiography undergoes three stages: X-ray film photogra-

phy, computed radiography (CR) and digital radiography

(DR). The single-energy X-ray DR image merely gives the

cumulative density information of the irradiated objects in

one direction. It is used in preliminarymedical diagnosis and

simple security inspection. Since single-energy X-ray DR

provides limited information, the dual-energy method was

developed. Low-energy dual-energy X-ray DR imaging has

been widely used in current security inspection equipment,

which can detect and distinguish contraband by determining

material atomic number Z. The X-ray’s energy here is usu-

ally lower than 1 MeV. This technology is inapplicable in

highZmaterial recognition or cargo inspection, as the energy

of theX-raywhich can penetrate the object in these situations

needs to be a few MeV.

The British company Cambridge Imaging first proposed

the idea of high-energy dual-energy X-ray imaging. There

were some disputes about the validity of the high-energy

dual-energy method in material recognition. The Russian

Efremov Research Institute proved the feasibility of this

method with their experimental prototype [4]. The German

company Heimann and the American company EG&G

applied X-ray hardening technology to this field and pro-

posed the filter method. The Department of Engineering

Physics at Tsinghua University and its cooperative enter-

prise, Nuctech, established a platform and made some

achievements on material recognition and related studies.

The theory of high-energy dual-energy X-ray DR imaging

and material recognition has been deeply studied, and the
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corresponding experiment results further validated the

feasibility of dual-energy imaging material recognition [5].

In this paper, we construct an imaging system model and

a whole data processing flow. For the best visual effects of

the final results, we used the image smoothing strategy and

image colorization processing. Some realization details are

also given. The R-curve material recognition method is a

typical high-energy dual-energy X-ray DR material

recognition method [6]. We developed a real-time R-curve

calibration method. It deals with the differences of the R-

curves of different energy spectra caused by the system

status fluctuation and inconsistency. In Sect. 2, we intro-

duced the technology principle and elaborated on the

methods of a MeV dual-energy imaging model. We

focused on the calibration strategy we designed. In Sect. 3,

we gave and discussed some experimental results. We

concluded and envisioned future work in Sect. 4.

2 Theory and method

2.1 The principle of MeV dual-energy X-ray

imaging in material recognition

The three main interactions between a photon and

matter are the photoelectric effect, Compton scatter effect

and the electron pair effect. They, respectively, dominate

the low (\1 MeV)-, middle (1–3 MeV)- and high

([3 MeV)-energy range [7]. The corresponding attenua-

tion coefficients, l, have different dependences with a

material atomic number, Z. We can give

lP / Z4 \1MeV;

lCS / 1 1� 3MeV;

lEP / Z [ 3MeV;

ð1Þ

where P, CS and EP are the abbreviations of the three

effects. Consider an X-ray source whose energy spectrum

is N(E) and the highest energy is Em, a single substance

with an atomic number of Z, an attenuation coefficient

function of lðE; ZÞ and a thickness t, the transparence, T, is

T ¼ I

I0
¼

R Em

0
NðEÞe�lðE;ZÞtdE
R Em

0
NðEÞdE

: ð2Þ

In a dual-energy situation, the boundary energy of the two

X-ray sources is E1 and E2. We defined the logarithmic

ratio of T as

R ¼ lnT1

lnT2
¼ �lðE1; t; ZÞ

�lðE2; t; ZÞ
; ð3Þ

where R is the ratio of the equivalent attenuation coeffi-

cient, �l. When the X-ray source is monochromatic, which

means the energy spectrum N(E) is a single line, Eqs. (2)

and (3) can be simplified. Suppose E1 is in the low-energy

range and E2 is in the middle energy range, R can be

written as

R ¼ lnT1

lnT2
¼ ln e�lðE1;t;ZÞt

ln e�lðE2;t;ZÞt
¼ lðE1; ZÞ

lðE2; ZÞ
� lPðE1; ZÞ

lCSE2; Z
� cðE1;E2ÞZ4: ð4Þ

From Eq. (3), R is easily computable. From Eq. (4), R is a

clear indication of Z. Besides, when the X-ray is poly-

chromatic, a great dependence between R and Z still exists.

Based on these facts, low-energy dual-energy X-ray DR

imaging technology has been widely used in small security

inspection devices for material discrimination. Low-energy

dual-energy means that E1 and E2 are usually lower than 1

MeV.

When Z is high and the irradiated object is thick, low-

energy X-ray imaging becomes useless. If we change E1 to

the high-energy range and keep E2 in the middle energy

range, then Eq. (4) is

R ¼ lðE1; ZÞ
lðE2; ZÞ

� lEPðE1; ZÞ
lCSðE2; ZÞ

� cðE1;E2ÞZ; ð5Þ

and R is dependent on Z to a certain extent, so it can be still

used to classify material. This ideal conclusion without

consideration of the subordinated interaction of photons

with matter is based on the assumption of the single-line X-

ray energy spectrum. In fact, a MeV X-ray DR system uses

the linear accelerator as the X-ray source, which generates

X-rays with a broad energy spectrum [8]. Most of the

photons were distributed in the middle energy range, where

l and Z have no correlations. The effectiveness of R in

material recognition is not obvious. It was found that,

although R changes when thickness t changes, R is still

dependent on Z [9]. Here E1 and E2 are usually higher than

3 MeV.

2.2 A MeV dual-energy system

We use a schematic model (see Fig. 1), including an

accelerator, which emits a vertical fan-shaped X-ray beam,

a scanning track, which is perpendicular to the X-ray’s

main beam direction, an L-shape detector and a data pro-

cessing unit. The cargo moves along the scanning track,

while the L-shape detector receives the photons passing

through the cargo and form the dual-energy X-ray images.

The data processing unit consists of four steps. First,

correct the acquired original dual-energy X-ray images and

calculate the dual-energy transparence images. Second, use

the classification curve on the dual-energy transparence

images to form the material information image. Third, to

improve the image quality, a smoothing process is
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implemented. The final step is the colorization of the gray

image. In the next four sections, we will introduce these

four steps of the data processing unit and mainly concen-

trate on the calibration of the classification curve. We

propose a real-time R-curve calibration method. In Sect. 3,

we can see that our method enhances the classification

accuracy and gives a satisfactory visual result.

2.3 Data acquisition and preprocessing

We assume that the accelerator produces the dual-en-

ergy X-ray simultaneously. Accordingly, the detector is

able to distinguish high and low-energy X-rays and form

the dual-energy X-ray images separately. Other aspects of

our model are basically the same as reality. The fan-shaped

X-ray has an angular distribution. Its main beam is located

near the middle of the fan and has a maximum intensity

decreasing toward both sides. It causes different vertical

positions of the X-ray image which have a different X-ray

intensity and energy spectrum. The accelerator state fluc-

tuation in the scanning process causes different lateral

positions of the X-ray image which have a different X-ray

intensity and energy spectrum. The detector background

and response inconsistencies also exist. In data processing

unit, the first step is to correct the original data and get the

dual-energy transparence image. We give Eq. (6) based on

Eq. (2).

Tðx; yÞ ¼ Iðx; yÞ � IBKðx; yÞ
I0ðx; yÞ

� LDðxÞ: ð6Þ

The coordinate x, y represents the lateral and vertical

position. I is the original dual-energy image. I0 is the air

image. IBK is the detector background image. The correc-

tion factor, LD(x), obtained by monitoring the accelerator

state fluctuation in the scanning process is a function of the

lateral position, x. In Eq. (6), the division by I0 corrects the

intensity angular distribution and detector response incon-

sistencies. Rest corrections are also done by Eq. (6). After

the point-by-point correction and simple denoising, we can

get the dual-energy transparence image, T.

To take advantages of two transparence images, we

use a pointwise weighted fusion of them. In the thick

places of the irradiated object, the high-energy trans-

parence image gives more information than the low-en-

ergy transparence image. The conclusion is opposite in

the thin places. The gray value, representing one point’s

thickness, determines the weight. Using the dual-energy

transparence image and the classification curve, which we

will elaborate on next, we can get the material informa-

tion image. The colorization assembling the fused trans-

parence image and the material information image gives a

final result.

2.4 Curve-based material recognition method

Four kinds of classification curves, R-curve (Fig. 2a),

T2 � T1 curve (Fig. 2b), a-curve (Fig. 2c) [10, 11], and a

separability curve which denotes the transparence differ-

ence of the two materials (Fig. 2d), are shown in Fig. 2.

Among them, the R-curve has the best visual separability,

so we use the R-curve to show the calibration output and

result comparison. The data in Fig. 2 are ideal. The lon-

gitudinal coordinate of the R-curve is R, defined in

Eq. (3), and the horizontal coordinate is the inverse of T1
or T2. Different materials have different R-curves. They

are arranged in Z’s increasing order when they are in the

same image [6]. The classification curve here has several

single R-curves related to the same number of typical

objects. We assume that there are four typical objects,

including Pb, Fe, Al and CH2 (or C), as we can see in

Fig. 2.

(x, y) is one point of the dual-energy transparence

image. There are two transparence values, T1ðx; yÞ and

T2ðx; yÞ. They give a point, ðR; 1=T2Þ, on the classification

curve, C. Because R-curves of different materials are

arranged in Z’s increasing order, the point (x, y) is obtained

by interpolating between two adjacent R-curves in C. By

repeating this procedure on each point of the dual-energy

transparence image, the material information image

Z(x, y) is formed.

Equations (2) and (3) show that the R-curve correlates

with the energy spectrum. We already know that each

point of the dual-energy transparence image has different

X-ray intensity and energy spectrum because of the

angular distribution and the accelerator state fluctuation.

This fact causes a problem that different points of the

dual-energy transparence image need different classifi-

cation curves. However, it is impossible to calibrate all

of the classification curves. We designed a new calibra-

tion method to obtain all of the points’ approximate R-

curves.

The calibration strategy we employ takes two steps.

First, we get the basic classification curve before the

Fig. 1 An schematic model of the cargo inspection system
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system scans cargo or after the system state significantly

changes. This step requires scanning several typical

materials. In one scanning process, the system only scans

one typical material with a different mass thickness. Like

the common scan, we get two transparence images T1, T2,

and each point, (x, y), belongs to an R-curve, Rxy.

Assuming a steady system state in the process, we ignore

the differences of energy spectrum in different lateral

positions and just use several vertical points to represent

the whole angular distribution. So we have

Rxy ¼ Ry; y ¼ y1; y2; . . .; yn: ð7Þ

The data are

datay ¼ fRy½T1ðxi; yÞ; T2ðxi; yÞ�; i ¼ 1; 2; . . .;mg;

y ¼ y1; y2; . . .; yn;
ð8Þ

where m is the number of different mass thicknesses and n

is the number of vertical points. The R-curve is fitted with

these data, and the classification curve is formed with these

fitted curves of several typical objects. Here, we use Pb, Fe,

Al and C.

fRZ
y jRZ

y ¼ fitðdataZy Þ; y ¼ y1; y2; . . .; yng;

Cyi ¼ fRyi;Z jZ ¼ Pb; Fe;Al;Cg; i ¼ 1; 2; . . .; n:
ð9Þ

In the cargo scan, the system monitors the state variation to

complete the real-time calibration of the classification

curve. A small device consisted of the typical materials

with the single thickness set in a certain vertical position, Y,

and scanned synchronously with the cargo. The data are

TZ
1rðxi; YÞ; TZ

2rðxi; YÞ; i ¼ 1; 2; . . .; nx;

Z ¼ Pb; Fe;Al;C;
ð10Þ

where nx is the number of horizontal pixels. In the first

step, these data are also saved as TZ
1bðxi; YÞ; TZ

2bðxi; YÞ.
They are the average of T on the horizontal direction, as

we ignore the lateral difference. Then the revised classifi-

cation curve will be

Cxjyi ¼ fRZ
xjyj

jRZ
xjyj

¼ RZ
yi
� FðTZ

1r; T
Z
2r; T

Z
1b; T

Z
2b; xj; YÞ; Z

¼ Pb; Fe;Al;Cg;
i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .; nx:

ð11Þ

Fig. 2 (Color online) Four kinds of classification curves. The R-curve has the best visual separability
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The function F uses real-time calibrating data to estimate

the difference between RZ
xv and RZ

v . The correction method

in Eq. (11) relies on how function F is calculated. Con-

sidering the statistical straggling of Tðxj; YÞ, we choose a

segment of xj and use the average of the monitoring data to

correct the classification curve.

2.5 Smooth of material information image

The detector signal noise inevitably exists, and it is even

amplified in the data processing. It has an impact on material

recognition accuracy and makes the material information

image rough. The visual effect of final result after colorization

is not good enough. Material information image quality pro-

motion is necessary. Some literature proposes image seg-

mentation smooth strategy [9, 12]. We apply the same idea.

The first step of our smooth process is the segmentation

of the fused transparence image, which is obtained previ-

ously. The image is segmented into regions, which keep the

continuity of the irradiated objects interior as much as

possible and discriminate different irradiated objects as

clearly as possible. The average of all the Z values in a

corresponding region in the material information image is

assigned to all points in this region.

The general image segmentation algorithm, like the

single-pass split-merge algorithm, or data clustering algo-

rithm, like the Leader algorithm, can be used here with

some adjustment [13]. The irradiated objects may be mixed

and disordered. So the segmentation or cluster result may

have too many small areas with only several pixels. This

over-segmentation can be solved by merging the small area

into the nearest large area. The ‘nearest’ means not only the

distance but also the similarity between them.

Using the average of the Z values in one segmentation

region to replace all points in this region brings some loss

of the original information. The denoising approaches can

give a better material information image, and the majority

of the image remains the same. It is a challenge to find a

better method, which can smooth the image while maxi-

mizing the retention of the original information.

2.6 Colorization

The idea of colorization and the IHS color space was

proposed in Ref. [9, 12]. We use a similar approach

applying HLS color space [14]. In the colorization, dif-

ferent colors represent different materials. We use three

color spaces, including RGB, HLS and YUV. If all three

values in a color space are known, a color is determined.

We divide the range of Z into several parts as follows:

Z\Z1; Z1 � Z2; . . .; Zp�1 � Zp; Zp � Z: ð12Þ

There are pþ 1 hues H1, H2, . . ., Hpþ1. When the Z value

of one point in the material information image falls into the

jth part, the H value in the HLS color space equals Hj.

The sensitivity of the human eye to different color is

different. There are red, green and blue with the same

L value in the HLS color space. The brightness felt by eyes

is different. Green is the brightest and red is brighter than

blue. If the L value equals the gray value, the points with

same gray value will give a different brightness when we

look at the final result. It is inappropriate.

In the YUV color space, colors with same Y value give

the closest brightness feeling. Let the Y value equal the

gray value of the fused transparence image. The YUV color

space and HLS color space can be converted to each other.

So we have

Y ¼ f ðH; L; SÞ: ð13Þ

As Y, H, f is known and S is given, L is the solution of

Eq. (13). Then all three values in the HLS color space are

already set, and a color is determined. Repeat this proce-

dure on every point of the material information image to

get the final result.

The table of hue and the saturation value, S, are

changeable and directly influence the image’s visual effect.

The mapping relationship between Y and the gray value can

be optimized by some transformation, like logarithm

stretching.

3 Experimental result

The data are provided by a 6/3 MeV X-ray DR imaging

cargo inspection system, which applies our basic design of

a data processing unit. The accelerator alternatively emits

the high and low-energy X-rays. The emission frequencies

are both 40 Hz. We use a single column of the CWO

detector and a scanning speed is 0.2 m/s. The basic clas-

sification curve is formed by scanning three single mate-

rials, C, Al and Fe. A stair-step object with a single

material component is scanned to form one R-curve [15].

All R-curves together form a classification curve. For

clarity of the results, we use one R-curve representing a

classification curve. There are two different system states.

In Fig. 3, the dotted curve is the classification curve in state

1 and the dashed curve represents the classification curve in

state 2. The solid curve is the revised classification curve

based on the classification curve in state 1. The revision

uses the difference between the real-time calibrating data

of the two states. We think that the dashed curve is the

‘true’ classification curve in state 2 and the solid curve is an

estimation of the ‘true’ one. Their closeness shows the

effectiveness and rationality of our calibration strategy.
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We arrange eight objects in the order of Pb, Fe, Al, C,

Al, C, Pb and Fe and divide them into two groups

according to size. Their mass thicknesses are all 40 g=cm2.

The scanning of these eight objects is in state 2. Suppose

we do not know the classification curve in state 2 (dashed

curve in Fig. 3). Our calibration strategy means that we can

get the classification curve in state 2 if we know the clas-

sification curve in state 1 and the real-time calibration data

of the two states. In Fig. 4, the image a) on the left is the

final result without the use of the real-time calibrating data.

For the four larger objects Al, C, Pb and Fe, the specific

Z values obtained using the classification curve in state 1

(dotted curve in Fig. 3) are 46, 27, 62 and 54. The image b)

in the middle is the final result with the use of the real-time

calibrating data. For the four larger objects Al, C, Pb and

Fe, the specific Z values obtained by using the calibrated

curve (solid curve in Fig. 3) are 18, 9, 54 and 45. The

image c) on the right is the color table. The system col-

orization settings give that the hues of four typical objects,

C, Al, Fe and Pb, are orange, green, blue and purple. We

also use the classification curve in state 2 (dashed curve in

Fig. 3) and get the Z values 16, 5, 54 and 45. Note that

there is no R-curve of Pb, and the Z values of the Pb object

from three sets of results are 62, 54 and 54 and far from 82.

The consequent color of the Pb object is deviated from the

righteous color. Although the Z value of the Fe object has

an obvious deviation due to the lack of the R-curve of Pb, it

is in the righteous region, and thus, the color is also righ-

teous. The data and figure comparison clearly show the

effectiveness of the real-time calibration and also match the

comparison of the curves in Fig. 3. Besides Pb, the other

materials’ results show that our calibration strategy

enhances classification accuracy.

Notice that all objects in Fig. 4 are made up of the

uniform single material, and the two classification curves

under two states have distinct differences. The conditions

are ideal, and accordingly, the results are good. In the real

scan, the scanned objects are always complex. We may be

unable to figure out true Z values of all the points, and thus,

we cannot verify the accuracy of the recognition results.

What we can do is to make the classification curve, whe-

ther directly calibrated or real-time revised, as accurate as

possible. There are two points to note. First, the calibration

of the basic classification curve is used as the basis for a

steady system state. Second, the real-time monitoring data

have statistical fluctuation even exceeding the state fluc-

tuation of the accelerator or angular distribution. Using the

average of a piece of data to reflect the variation is better

than using every single point.

In Fig. 5, the comparison is the final color image with and

without the smooth process. The larger orange object in

image a) looks not uniform, although it should be the same

color. We can see that the smoothing improves the image

quality. However, the effect is obsolete because of the

monotony and uniformity of the irradiated objects.When the

objects are complex, the smoothing process will influence

the classification accuracy because the rearrangement of the

Fig. 3 (Color online) The ‘true’ curves in two states are C1 and C2.

The revised R-curve using the real-time calibration data to estimate

the ‘true’ curve in state 2 is Cm2

Fig. 4 (Color online) Comparison of the results with the real-time calibration (a) and without the real-time calibration (b), and c is the color

table
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Z values may change the well-classified points, which are

segmented into a region with a fairly different Z value.

In Fig. 6, we give a cargo inspection result. The emis-

sion frequencies of the dual-energy X-rays are both 33 Hz.

The scanning speed is 0.2 m/s. The irradiated objects from

left to right are a cigarette, salt, sugar, coffee, buckets of

water and concrete. According to the continuity of the

irradiated objects, we can assure that the spots and stripes

in the object regions of the image on the top are noise and

need to be removed. The smoothing process eliminates the

noise spots and nonuniformity and significantly promotes

the image quality. In the red circled region of the image on

the top, the bottom margin of the bucket is overwhelmed

by the noise and almost disappears. After the smoothing

process, the margin is recovered. Our smoothing method

may strengthen the details of simple object regions.

In the cigarette region, the thickness of the cigarette is

small. When the irradiated object is thin, the calibration

curve separability is worse. With the data fluctuation, the

final color image will be full of stripes and spots, as we can

see in the amplified region of the image on the top. The

cigarette belongs to the orange category, so the blue pixels

are noise. The smoothing process takes the average in the

cigarette region of the material information image. So the

final color will be the middle color between orange and

blue, according to the color table. The color changes to

Fig. 5 (Color online) Comparison of the results with smoothing (a) and without smoothing (b), and c is the color table

Fig. 6 (Color online)

Comparison of cargo inspection

result with smoothing (a) and
without smoothing (b). From
left to right, the irradiated

objects are cigarette, salt, sugar,

coffee, buckets of water and

concrete. The circled regions

clearly show the smoothing

effect
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green, as we can see in the amplified region of the image on

the bottom.

4 Discussion and conclusion

We described a simple MeV dual-energy X-ray DR

imaging cargo inspection system with a detailed descrip-

tion of the data processing unit. The preliminary treatment

converts the original data into images for subsequent pro-

cessing needs. The calibration strategy of the classification

curve enhances the classification performance. The

smoothing of the material information image is to enhance

the image quality. Segmentation is the key part of our

smoothing process. Better segmentation methods lead to

better image quality. Color imaging can carry more infor-

mation and give a better visual effect. Colorization can be

regulated in different application environments. This sys-

tem design has a certain guiding significance to the

engineering.

Our calibration method is devoted to give the correct

classification curve and enhance the classification accu-

racy. There are several different directions to achieve this

goal or push forward the further development of dual-en-

ergy X-ray imaging technology. Add a low-energy detector

to promote recognition ability of thin objects [16]. Use the

Cerenkov detector, which has a threshold and a good

response to high-energy X-rays [17]. Add the obstacle’s

classification curve on the blocked material’s classification

to enhance the blocked material’s recognition accu-

racy [18]. Use small angle scatter to realize the material

recognition [19]. These methods can be applied to our

system or a new imaging system based on our model and

data processing flow.
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