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Abstract The asymmetric neutron stars are investigated
in a relativistic effective model with vacuum fluctuations
(VF) taken into account. Due to the VF effects, various
properties of the neutron matter become ‘softened’ com-
paring to that obtained in the FSUGold model, and the
maximum mass of the (npeu) neutron stars is reduced from
1.71M¢, to 1.35M,.
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1 Introduction

The neutron stars with masses of the order of solar mass
are the result of supernova explosions. As their radii are
merely 10-12 km [1], the interior density of a neutron star
exceeds several times the nuclear saturation density. Thus,
neutron star matter provides an interesting laboratory for
studying strong interactions at high density of nucleons and
has been attracting a lot of academic interests [2—4]. In this
work, we will concentrate our investigation on the
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asymmetric neutron stars consisting of neutrons, protons,
and leptons.

The basic framework to be employed is the relativistic
mean-field theory (RMF) that has proven successful for the
study of nuclear matter as a relativistic many-body system
of baryons and mesons [5, 6]. Ever since the seminal work
of the Walecka model [5], there have been many important
extensions of quantum hadron dynamics (QHD) that
improved our understanding of hadron matter at high
density. For example, an important theoretical advance-
ment appeared in early 2001 [7], where nonlinear cou-
plings between the isovector and isoscalar mesons were
introduced to soften the symmetry energy of nuclear matter
at high density using an appropriate data set called the
FSUGold model [8]. Further applications of this model
and its extensions proved to be successful in many
aspects [9-11].

As noted in Ref. [12], it is better to use the in-medium
meson masses in such RMF studies of nuclear matter at
high density (Actually such in-medium meson masses have
been studied in both experimental and theoretical approa-
ches [13-18]). Following Refs. [12, 19], we will calculate
the effective masses of nucleons. Mesons are calculated by
taking into account the effects of the vacuum fluctuation
(VF) in the extension of QHD proposed in Refs. [7, 8]. We
will also investigate how the properties of neutron matter
are affected. Our results will be compared to these obtained
in the FSUGold model [20, 21].

This work is organized as follows: In Sect. 2, we present
the framework (henceforth referred to as VF-RMF model
as in Ref. [19]) and theoretical results for our investigation
of various properties for neutron stars. In Sect. 3, the
numerical results are presented in comparison with that of
FSUGold model. The summary is given in Sect. 4.
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2 Effective masses and nuclear matter

The Lagrangian density employed in this work

reads [21]
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where N represents nucleons n and p, and [/ represents
leptons e~ and u~, my,mg,, m,,, and m, denote the masses
for N and o, w, p, respectively. F,, and éw denote the
antisymmetric tensors of vector fields w and p, respec-
tively [21]. Note that A, is the coupling first introduced in
Ref. [7].

The meson field equations in the RMF read:

1 1
mo + 3 kg o> + gﬂugiNG3 = 2\; gaN Py (2)
!
Moy + Z 8o’ + 2M gy gy P’ = Z SoNPNs (3)
1
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where py and p3 are the nucleon density and scalar den-
sity, respectively,

k}\Fl d3k
PN = 2/0 W? (5)
=i [ TG 0

with k¥ being the Fermi momentum of the nucleon and G
being the in-medium part of the propagator for quasi-
nucleons,

G" (k) = Gy (k) + Gp k), (7)
GY (k) = % (8)
G = m a0~ EDOGY - ). )
where EY = \/(k¥)* + (m})* and mj, is the effective mass

that includes the VF effects as below (Fig. 1a)[12, 19]:
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Fig. 1 The one-loop self-energy of nucleons (a) and mesons (b)
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The effective (in-medium) meson masses are calculated in
the random-phase approximation (RPA) (Fig. 1b) [22],

(m3)* = mg +y(q), (11)

(m;)* = m} + Mizr(q), (i = o, p), (12)

with II; 7 being the corresponding transverse part of the
polarization tensor of vector mesons,

lgoNZ/
g(uNZ/

STr[GY(k+q)GY(k)],  (13)

(g [7,G" (k + 4)7,G" (k)]

(14)
Tr[tny, G (k + q)tny,G" (k)]

(15)

with which one could obtain on-shell and off-shell in-
medium meson masses. The expressions of the off-shell
(¢"* = 0) case are quite simple:

I 0(q) = gpNZ/
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For the asymmetric neutron star matter with nucleons and
charged leptons, the f equilibrium conditions are guaran-
teed with the following relations of chemical potentials:

By =ty = Moy My = Hes (18)
and the charge-neutrality condition,
ny =ne + ny-, (19)
where n; is the number density of particle i, and the
chemical potentials of nucleons and leptons read
ty = E} 4 govo + 8pNTIND,

(20)

W= (ké)z +m12a

where kL denotes the Fermi momentum of a lepton.
Then, the equations of state (EOS) obtained in this VF-
RMF model read,
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With these EOS, the mass-radius relation, other properties
of neutron stars can be computed by solving the Tolman—
Oppenheimer-Volkoff (TOV) Eq. [1].

3 Numerical results and discussions

The nucleon and meson masses and the isoscalar cou-
plings of the FSUGold data set, listed in Table 1, are
adopted in our calculation. The couplings (gon, 8N &oN)
are determined so that the following saturation properties
are reproduced: nucleon density p, = 0.148 fm~3, binding
energy per nucleon E/A = —16.3 MeV, and the symmetry
energy Egm = 32.5MeV, they are listed in Table 2 toge-
ther with the FSUGold data set for comparison.

The effective nucleon mass calculated from Eq. (10) is
shown by the solid line in Fig. 2. The decreasing of
nucleon effective mass versus nucleon density is slower
with the VF effects than that without, in agreement with the
findings using other VF-RMF models [12, 19].

Table 1 The parameter set in

FSUGold Parameters Values
mg (MeV) 491.5
mg, (MeV) 783
m, (MeV) 763
K 1.42
A 0.0238
4 0.06
A, 0.03
Table 2 Nucleon-meson coupling constants
Coupling VE-RMF FSUGold
86N 14.57 10.59
8N 12.917 14.3
8N 10.29 11.7673
1000 T T T T T T T T T T T T T T
900 - - - FSUGold :
800 | —— VF-RMF
700

m, (Mev)
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8
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Fig. 2 Effective nucleon mass as a function of nucleon density
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Fig. 3 Effective meson masses: on-shell (a) and off-shell (b)

The effective meson masses (on-shell and off-shell)
calculated from Eqgs. (11-17) are depicted in Fig. 3. Our
results here agree with that of Ref. [19] as the same loop
diagrams are involved. We note that the on-shell effective
meson masses (Fig. 3a) decrease at the normal density,
which are indicated in most experiments and theoretical
studies [12-19]. As noted in Ref. [19], the effective meson
masses begin to increase at high density, which are beyond
the reach of current experiments. As the four-momentum
transfer equals zero, the off-shell effective meson masses
(Fig. 3b) increase with the nucleon density, which is dif-
ferent from the on-shell ones.

The EOS curve determined from Egs. (21), (22) (when
the neutron star matter reaches f§ equilibrium) is presented
in Fig. 4 together with the curve from the FSUGold model
for a comparison. We see again that the EOS curve in our
VE-RMF model is lower than that in the FSUGold model,
similar to the findings in Ref. [19]. That is to say, the VF
effects ‘softened’ the EOS curve of the asymmetric neutron
matter. In Figs. 5 and 6, we presented the particle popu-
lation for (npep) matter at different nucleon densities in the
FSUGold model and VF-RMF model, respectively. The
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Fig. 4 Equation of state for (npep) matter in VF-RMF and FSUGold
models

left panel is for A, = 0.03 and the right panel for A, = 0.
We see that the population curves in Figs. 5 and 6 bear
almost the same shapes; the differences are negligible.
Now following standard procedures for solving the TOV
equation with the help of EOS, we could obtain the mass
(in units of solar mass, M) of the neutron star. The out-
come is shown in Fig. 7 and Table 3. The maximum mass
of the (npeu) neutron stars in our VF-RMF model is
1.35M, about 21% down in size compared to the FSU-
Gold value, 1.71M, [20], similar to that found in Ref. [19].
The curves obtained in other non-VF models [20] and the
two recent astronomical observations, the binary-pulsar
systems J0348 + 0432 and J1614 — 2230 [23, 24], were
also shown in Fig. 7 for comparison. The implications will
be briefly discussed in next section. We note in passing that
a quark star with maximum mass over two solar mass was
obtained in an improved quasiparticle model in Ref. [25].

4 Conclusion

In summary, we considered the VF effects (from
nucleon loop) in the framework of RMF that include
additional isoscalar—isovector cross interaction terms for
softening the symmetric energy of nuclear matter at high
density. For illustration, we considered in this work the
simple case of determining the three nucleon-meson cou-
plings (g, 8N &on) Via some saturation properties, while
keeping the rest of the parameters of the FSUGold model
intact. Like studies using other RMF models, the VF
effects tend to ‘soften’ the EOS curve and other properties
of the asymmetric neutron matter, and the maximum mass
of such neutron stars is reduced from 1.71M to 1.35M.

Given that the recent experimental/observational data of
maximum neutron mass is about 2.0M, [23, 24], it seems
in principle to be a demanding job to explore how other and
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Fig. 7 Neutron star mass versus central density: pure neutron star
(dotted curve); npep neutron star in FSUGold model (dashed curve);

n + p + hyperons (dash-dotted curve); npey neutron star in VF-RMF
(this work) (solid curve)

Table 3 The maximum mass in VE-RMF and FSUGold models

Parameter VF-RMF FSUGold

A, =0.03 1.35M., 1.71M,,

higher loop corrections within the RMF framework could
affect the neutron properties before arriving at reliable
theoretical conclusions. As we only determined the cou-
pling constants in a very limited region of the whole
parameter space, the results obtained here could not be
used to infer too much. Further exploration of other regions
of the parameter space for the couplings in Eq. (1) will be
done in the near future.
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