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Abstract The stochastic point kinetics equations with a
multi-group of delayed neutrons, which are the system of a
couple of stiff stochastic differential equations, are presented.
The analytical exponential model is used to solve the stochastic
point kinetics equations in the dynamical system of the nuclear
reactor. This method is based on the eigenvalues and corre-
sponding eigenvectors of the coefficient matrix. The analytical
exponential model calculates the mean and standard deviations
of neutrons and precursor populations for the stochastic point
kinetics equations with step, ramp, and sinusoidal reactivities.
The results of the analytical exponential model are compared
with published methods and the results of the deterministic
point kinetics model. This comparison confirms that the ana-
lytical exponential model is an efficient method for solving
stochastic stiff point kinetics equations.

Keywords Stochastic differential equation - Nuclear
reactor dynamics - Multi-group precursor concentration

1 Introduction

The point reactor kinetics equations are the most
essential model in the field of nuclear engineering. This
system is a coupled linear differential equation and
describes the neutron population density and the precursor
concentration of delayed neutrons at the center point of
homogenous reactors. A point reactor is a homogenous
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reactor in which the spatial effects have been eliminated.
This is obviously possible if the homogenous reactor’s
length is infinite in all spatial dimensions.

The dynamical process explained by the point kinetics
equation is stochastic in nature. The neutron population
density and delayed neutron precursor concentrations differ
randomly with respect to time. At the levels of high power,
the random behavior is imperceptible. But at low power
levels, such as at the beginning, random fluctuation in the
neutron population density and neutron precursor concen-
trations can be crucial. The aim of this work presents an
accurate method for stochastic point kinetics equations
with step, ramp, and sinusoidal reactivities.

There are some techniques which are used for stochastic
point reactor Kinetics equations. The first of these tech-
niques is the stochastic piecewise constant approximation
(stochastic PCA) method and Monte Carlo computations,
which were used to calculate the neutron population den-
sity and sum of the precursors concentration population
density for different values of step reactivity [1, 2]. A
simplified stochastic model based on the forward stochastic
model in the stochastic kinetics theory and the It6
stochastic differential equations was developed for treating
monoenergetic space—time nuclear reactor kinetics in one
dimension [3, 4]. Simulation and experimental study of a
random neutron-analyzing system with a 2>2Cf neutron
source was presented in Ref. [5]. The Euler—Maruyama
and Taylor 1.5 strong-order methods were presented for
solving stochastic point kinetics equations with step and
sinusoidal reactivities [6, 7]. Finally, simplified stochastic
point kinetics equations (SSPK) were modeled with a
system of It stochastic differential equations. This
approach does not require computing the square root of a
matrix, which is a great computational advantage [8].
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In this work, the system of stochastic point kinetics
model in the dynamic nuclear reactor is derived in Sect. 2.
The analytical exponential model is presented and applied
to solve the stochastic point kinetics equations in Sect. 3.
The numerical results of the proposed method are dis-
cussed and compared with the traditional methods in
Sect. 4. Finally, the conclusions and future work are dis-
cussed in Sect. 5.

2 Stochastic model

The one-speed neutron diffusion equations with a multi-
group of delayed precursor concentrations are written as
[9-11]:

19 &(r,t) = DV?®(r,1) — (X, — ;) D(r, 1)

v Ot
+ (1 = p) = 1]2:P(r,1)
1
+ ) 4Cilr, 1) + So(r, 1), (1)
i=1
%Ci<r7 t) = ﬂiv2f¢(r, t) - )“iCi(n t)a i= 1323 33 . 'aI
(2)

where @(r,t) is the neutron population, r is the position
(cm), ¢ is the time (s), C;(r,?) is the ith group of delayed
precursor concentration, So(r,7) is the external neutron
source, D is the diffusion coefficient, 2, is the absorption
cross sections, Xr is the fission cross sections, v is the
neutron fission, v is the neutron speed, /; is the decay
constant of ith group of delayed neutrons, f3; is the fraction
of ith group delayed neutrons, and f§ = 25:1 p; is the total
fraction of delayed neutrons.

The neutron population and the ith group of the delayed
precursor concentration, using separation of variables, can
be written as:

®(r,1) = vn(t) P (r),

Ci(r,1) = ci(1) ¥ (v), (3)
So(r,1) = q¥(r),
where n(?) is the neutron population density as a function of

time only and ¢;(¢) is the precursor concentration density of
delayed neutrons.

The function ‘i’(r) is the fundamental function, which
can be determined from the following
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Vz‘ff(r) + Béq‘(r) =0, (4)

where Bé is the geometric buckling.
Substituting Egs. (3) and (4) into Egs. (1) and (2), we
get

d’;(tt) = — [DB; + X, — Zilvn(1)
+ [(1 = By — 1]Z¢vn(t) (5)
+ Z/%Ci(f) +4q,
i=1
dC,’(l‘) _ . ] —
dt _ﬁiVZfW’l(t) _ iicl([)’ i=1,2,3,...,1. (6)

According to Refs. [1, 2, 11], Eqgs. (5) and (6) can be
separated into four terms: deaths, births, decay, and
external sources. Therefore,

dn() 2
rPalade [DB; + 2, — Z¢Jvn(t)
Deaths
+ [(1 = B)v — 1]Z¢vn(r) )
Births
1
—+ iiC[ 1)+ R
2t o
Decay Source
dc;(t
ci(t) =pvZevn(t) — Lici(t), i=1,2,3,...,1. 8
dr ——— N ( )

Births Decay

Equations (7) and (8) can be rewritten as deterministic

. . . . .. X +DB?
point kinetics equations using the reactivity p = 1— —5—,
which is a function of time, the generation time of neutrons
A =~ and the constant o = 1.

fv v
dn(z) l—p—ua l—a—p
20— (A + (2
Deaths Births
9
, )
+ Aici(t) + ,
; i l( ) q
Decay Source
dc;(t : .
Cég):%n(t)—/wci(t), i=1,2,3,...1 (10)
S/_/ Decay
Births

Note that, n(?) is the population size of neutrons. ¢;(¢) is the
population size of the ith group of delayed precursor
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concentration. Equations (9) and (10) are the deterministic
point kinetics equations where terms are separated into
births, deaths, decay, and external source g. Indeed, the

neutron birth rate due to fission is b = A[(l%ﬂ;‘ﬁil] :ﬁ,
where [(1 — )v — 1] is the number of newborn neutrons in
each fission. The neutron death rate due to captures and
leakage is d = %. Also, Z;c; is the rate of the ith group
of delayed precursor decay.

To derive the stochastic dynamical system, let us take a
small time interval size & where the probability of more
than one event occurring during this time interval is small.
During time interval &, there are (I + 3) different possi-
bilities for an event. The change in populations n and c;
during this time interval is

An
AC‘]
|AP) = | A2 | & (AP|=(An Aci Ac, Acy).
AC[
(11)
In the present investigation, let us assume that the changes

are approximately normally distributed. The (I 4 3) pos-
sibilities and its probabilities are [1, 2]:

An -1
ACl 0

AP, =| Az | = | O |, p| = hdn, (12)
AC] 1 0
An (I-pByv—1
Acy Biv

|AP)) =| Acz | = Bav ., pa=hbn, (13)
Act ), Brv
An 1
AC] —1

APy) =| A | = [ O | py=hisey, (14)
AC[ 0

An

Acl 0
AP =| A2 | = [ =1 |, ps=hises, (15)
AC] 0

An 1
Ac 1 0

(16)
AP ) =[ A | =] 0

y P2 = hlcy,

Acy 1+2 -1

An 1
ACI 0

APy =| A | = | 0], ps=nhg (17)

Acy 1+3 0

In the present analysis, it is assumed that the extraneous
source produces neutrons randomly following a Poisson
process with intensity g. According to these assumptions, the
changes in neutron population and precursor concentration
are approximately normally distributed with a mean of

1
p—B
Y n+;iici+q
43 %n—/l]cl
E(|AP)) = " pi|AP) = h ,
=1 an/uzcz
Zln — ).16‘1

(18)
According to Ref. [8], the variance takes the form

1+3
Var(|AP)) ~ " pi|AP)(APy| = hB, (19)
k=1

where B is the diagonal matrix as
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—1—p+2p+(1-
1 n+ Z Jici +q 0 0 e 0
2y
0 /11 n+ ¢ 0 e 0
B = 2y
0 0 %n + 2 - 0
2y
0 0 0 e /’1 n+ e
Using central limit theorem, the random variate % n(t)
= |) follows standard normal distribution [1, 2, 12]. This c1(7)
implies |P(2)) = (1) ,
|AP) = E(|AP)) + v/ Var(|AP))[n), (20) 5
cr(r)
m p%ﬁ 2 /2 A1
where |’7> = > and 171)’/’27""71+1NN(071)' % 7/11 0 0
o Mi41 ] A= ﬁz 0 p 0 ,
Substituting Eqgs. (18) and (19) into Eq. (20), we have A -2
I .
l) —I—Zlicl'(t) +4q :
n(t + h) — (o) = % 0 0 —i
et +h) — e (1) %nm —rer(t) . Wi (1)
olt+h) —o@) | = &n(t) ) h 0 Wa(t)
- A o) =[O ].wiy = | WO |, (23)
C[(l + h) — C](t)
B
Al n(t) — Zci(1) 0 Wi (1)
m and [AW(1)) = V/h|n), where W, (), Wx(t), - - -, Wiy (¢) are
1, Wiener processes [6, 7].
+ ViRt m . Equation (22) .represents .the stochastic point r.ea.ctc?r
] kinetics model. Since B = 0, it reduces to the deterministic
point kinetics model. This model was solved analytically
Nt and numerically in many references, for example

(21)

This Eq. (21) gives, as & — 0, the following It stochastic
differential equation system

d
SIPO)

where

= AlP()) +1Q) + BES W), 22)
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Refs. [13-18].

3 Analytical exponential model

Using the integration factor, differential Eq. (22) in
matrix form is rewritten as



Analytical exponential model for stochastic point kinetics equations via eigenvalues and...

Page 5 of 8 20

%exp(—AlﬂP(f» =exp(—Ar)[Q)
» (24)
+ exp(—At)Bf& [W(t)).

Let us divide the time into M very small time intervals with
step size h. The matrices A and B are constants during the
time interval [t,,f,41], Wwhere t,41 =t,+h and
m=0,1,2,...,M — 1. Equation (24) can then take the
following form

exp( — A1) |P(tm+1)) — exp(—=Ad)[P(tm))

. 25
= hexp(—At,)|Q) + \/ﬁexp(—Atm)B7|n>, @)
and consequently, we get

|P(tms1)) = exp(hA)|P(tm)) + hexp(hA)|Q) (26)

+ Vhexp(hA)B2|r).

The mathematical treatment of this system can be found by
calculating all the eigenvalues and corresponding eigen-
vectors of matrix A and performing straightforward com-
putations. However, this is an expensive scheme, especially
when the reactivity varies with time, since the eigenvalues
of matrix A are calculated by solving the inhour equation, a
(I + 1)th-order algebraic equation, at each time step.

The eigenvectors of A, denoted by ket vectors |U;) and
the corresponding eigenvalues denoted by w;, obey the
relation

AlU;) = w;]U;)), j=0,1,2,... 1L (27)

The eigenvalues w; of matrix A are the roots of the inhour
formula
1

Bi

p=Ao+w . .
z;ﬂ,'—f—a)

(28)

i=

For j, an arbitrary function f(hA) satisfies the following
expression [13-16]

and, consequently, we get
1
exp(hA) =Y " U (U, (30)
j=0

with the properties
AlU) = o|U)),  (UJAT = (Ujlay,

1, k=j; (31)
0, k#j.

The ket eigenvectors |U;) and the bra eigenvectors (U;| are
calculated analytically [13-16]

and <Uk|UJ> = 5k7j = {

1

B
A(a)j + /L.l)
P
|Uj> = Qf A(wj + Az) )
B
/1(0)]‘ + }1)
/l] )2 Al
U =9 1 > e .
o j< (@ +721) (@ + %) (wj+)~1))
(32)
For the normalized condition (U;|U;) =1, we get Q; =
—— ¥ =0,1,2,...,1.
! +Zf:1/1<(,;/1+"/1,»)2

Hence, the general solution of the stochastic point
kinetics equation takes the following form

[P(tni1)) = Y U U [IP(tn)) + hIQ) + VEBE)],

J=0

where the initial condition is

n Bino ﬁzno__.M !
O Al Ak AN )

4 Numerical results and discussion

In this section, many of the examples are presented to
measure the accuracy of the analytical exponential model
(AEM) for stochastic point kinetics equations. The mean
and standard deviation of the neutron and precursor pop-
ulation are calculated by solving the stochastic point
kinetics equations with three different cases: step, ramp,
and sinusoidal reactivities, and are compared with the
published stochastic methods.

The first benchmark problem does not model an actual
physical nuclear reactor problem, but this problem provides
a simple computational solution for comparing the
stochastic model. This model simulates a step reactivity
insertion and assumes one neutron precursor [1]. The
parameters of this benchmark are as follows: the neutron
generation time A = % s, reactivity p = — % decay constant
J1 =0.1s7!, fraction delayed neutron f, = = 0.05,
number of neutrons per fission v = 2.5, external source
g =200s""!, and the initial condition assumes 7(0) = 400
and ¢(0) = 300. Table 1 presents the mean and standard
deviations of neutron and precursor populations using 40
time intervals for a time interval of length of 2. The results
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Table 1 Mean and standard deviations of neutron and precursor populations with step reactivity for the first benchmark problem

Monte Carlo Stochastic PCA Euler-Maruyama Taylor 1.5 strong order AEM DPKM (B =0)
E[n(2)] 400.03 395.32 412.23 412.10 396.28 n(2) = 396.63
a[n(2)] 27.311 29.411 34.391 34.519 31.212
Elc(2)] 300.00 300.67 315.96 315.93 300.42 ¢(2) = 300.40
olc(2)] 7.8073 8.3564 8.2656 8.3158 7.9576

Table 2 Mean and standard deviations of neutron and precursor populations with step reactivity for the second benchmark problem

Monte Stochastic Euler— Taylor 1.5 SSPK AEM DPKM (B =0)
Carlo PCA Maruyama strong order
p =0.003
E[n(0.1)] 183.04 186.31 208.6 199.408 184.8 186.30 179.95
a[n(0.1)] 168.79 164.16 255.95 168.547 186.96 164.14
E[Z§ 10(0.1)] 4.478E+5 4.491E+5 4.498E+5 4.497E+5 4.489E+5 4.490E+5 4.489E+5
6[216:1 c;(O.l)] 1495.7 1917.2 1233.38 1218.82 982.64 1911.91
p = 0.007
E[n(0.001)] 135.67 134.55 139.568 139.569 134.54 135.0
a[n(0.001)] 93.376 91.242 92.042 92.047 91.234
E[Z?:l ci(0.00I)} 4.464E+5 4.464E+5 4.463E+5 4.463E+5 4.464E+5 4.464E+5
U{Z?:l 01(0.001)] 7.8073 8.3564 8.2656 8.3158 19.235
800 ; 200 T T T
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§ 600 /\l ;“ " .§' 1601 N :
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Fig. 1 (Color online) Mean neutron population and two individual
neutron sample paths for reactivity p = 0.003

of the AEM are compared with the results of the Monte
Carlo, stochastic PCA method [1], Euler-Maruyama [6],
Taylor 1.5 strong-order [6], and the deterministic point
kinetics model (DPKM), i.e., B = 0 at time t = 2s. All the
stochastic methods use 5000 trails. Table 1 shows the
accuracy of the analytical exponential model such that the
results of the AEM are in good agreement with the deter-
ministic point kinetics model, more than other methods
under the same conditions. This example confirms that the
AEM is an efficient method for solving stochastic point
kinetics equations in nuclear reactor dynamics.
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Fig. 2 (Color online) Mean neutron population and two individual
neutron sample paths for reactivity p = 0.007

The second benchmark problem simulates a step reac-
tivity insertion for an actual nuclear reactor with six groups
of delayed neutrons [1]. The parameters of this reactor are
as follows: f3; = [0.000266,0.001491,0.001316,0.002849,
0.000896,0.000182], S =0.007, Z; =[0.0127,0.0317,
0.115,0.311,1.4,3.87] s~', 4 = 0.00002 s~ !, v =25,
ny = 100, and no external source ¢ = 0 s~ 1. Two cases of
step reactivity insertion, p = 0.003 and p = 0.007, are
presented. Calculation results of the mean and standard
deviations are shown in Table 2: at time 0.1 s for the first
case p =0.003 and at time 0.001 s for the second case



Analytical exponential model for stochastic point kinetics equations via eigenvalues and...

Page 7 of 8 20

140 T T T T T

— — Sample neutron

-+ Sample neutron 4 ;
—— Neutron Mean A B Lo

130

Neutron population

80

70! L 1 L L ! L L L L
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

Fig. 3 (Color online) Mean neutron population and two individual
neutron sample paths for a ramp reactivity

Neutron population

Time (s)

Fig. 4 (Color online) Mean neutron population and two individual
neutron sample paths for a sinusoidal reactivity

p = 0.007. The results of the AEM are compared with the
results of Monte Carlo, stochastic PCA method [1], Euler—
Maruyama [6], Taylor 1.5 strong-order [6], simplified
stochastic point kinetics (SSPK) method [8], and DPKM
(B = 0). All the stochastic methods use 5000 trails. The
agreement is seen between the results of the AEM, deter-
ministic point kinetics model, Monte Carlo, stochastic
PCA, and SSPK methods in Table 2 for two cases of
reactivity.

The mean neutron population and two individual neu-
tron sample paths are given in Fig. 1 for a step reactivity
insertion (p = 0.003) and in Fig. 2 for a step reactivity
insertion (p = 0.007).

The third benchmark problem simulates a ramp reac-
tivity insertion for the above actual nuclear reactor with six
groups of delayed neutrons. The parameters of this reactor
are the same as in the second benchmark problem, except
the reactivity is p = 0.1f¢. The mean neutron population
and two individual neutron sample paths are shown in
Fig. 3 using a time interval size of 7 = 0.01 s after 5000
trails.

The final benchmark problem simulates a sinusoidal
reactivity insertion, p = p; sin(%) [7]. The parameters of
the reactor with one group of delayed neutrons are as

follows: p, = 0.005333(0.68%), 4; =0.077s~!, B, =

B=0.0079, A=10"3s, ¢q=0s"!, np=1, and a half
period time of T = 50s. The mean neutron population and
two individual neutron sample paths are shown in Fig. 4
using the time interval size 7 = 0.1 s after 5000 trails.

5 Conclusion

In this work, stochastic point kinetics equations were
introduced, which represent the generalization of the
deterministic point kinetics equations. The analytical
exponential model was described, which is based on the
eigenvalues and corresponding eigenvectors. This method is
an efficient approximate for the stiff system of stochastic
point kinetics differential equations. The mean and standard
deviations of the neutron and precursor populations using
the analytical exponential model are in good agreement with
those by the deterministic point kinetics equations, Monte
Carlo, and stochastic PCA methods more than other refer-
ences methods. This agreement confirms that the analytical
exponential model is an efficient method for solving
stochastic point kinetics equations in nuclear reactor
dynamics using a step, ramp, and sinusoidal reactivities.

Possible future work may include the derivation and
study of stochastic multi-energy-group reactor kinetics
equations where spatial effects are included.
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