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Abstract A nondestructive instrumental neutron activa-

tion analysis with high-resolution gamma-ray spectrometry

of long-lived radionuclides was developed and used for

measurement of trace element contents in samples of bone

to determine health and diseases. Using this method, the

silver (Ag), cobalt (Co), chromium (Cr), iron (Fe), mercury

(Hg), rubidium (Rb), antimony (Sb), selenium (Se), and

zinc (Zn) mass fractions were estimated in bone samples

from 27 patients with intact bone (12 females and 15

males, aged from 16 to 49 years) who had died from var-

ious non-bone-related causes, mainly unexpected traumas,

and from 5 patients with chondroma (2 females and 3

males, 15–42 years old), obtained from open biopsies or

after operation. The reliability of the differences in the

results between intact bone and bone affected by chon-

droma was evaluated by a parametric Student’s t test and a

nonparametric Mann–Whitney U test. It was found that in

the bone affected by chondroma, the mean mass fractions

of Co, Cr, Fe, Se, Sb, and Zn were significantly higher than

in normal bone tissues. In the neoplastic bone, many cor-

relations between trace elements found in the control group

were no longer evident. This work revealed that there is a

significant disturbance of the trace element metabolism in

bone affected by chondroma.
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1 Introduction

The measurement of the trace element contents in bone

samples is a difficult analytical task because bone is a very

highly mineralized tissue. On average, bone tissue contains

about 10 %–25 % water, 25 % protein fibers, like collagen,

and 50 % mineral hydroxyapatite, Ca10ðPO4Þ6ðOHÞ2. All

the usual analytical methods for trace element measure-

ment are based on the investigation of processed tissue

with a goal to resolve samples or to resolve samples and

remove the organic/mineral matrix. In such studies, tissue

samples are ashed and/or acid digested before analysis.

There is evidence that certain quantities of chemical ele-

ments are lost as a result of such treatment [1–3]. Thus,

when using destructive analytical methods, it is necessary

to control for the loss of trace elements, for complete acid

digestion of the sample, and for the contamination by trace

elements during sample decomposition, which requires

adding some chemicals. It is possible to avoid these diffi-

cult procedures using nondestructive nuclear analytical

methods, including neutron activation analysis.

Trace elements play a great role in the normal function

and pathophysiology of bone. The effects of trace elements

are related to content, and recorded observations range from

a deficiency state to functioning as biologically essential

components to an unbalance when an excess of one element

interferes with the function of another to pharmacologically
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active doses and, finally, to toxic and even life-threatening

levels [1, 4]. The roles of trace elements in the development

and inhibition of diseases have given rise to many questions

because of their essential and toxic effects on bone health.

Thus, in normal environmental and health conditions, there

is a range of normal levels of trace elements in bone. An

imbalance of trace element contents could be a causative

factor for many diseases [1]. On the other hand, pathological

conditions can affect the content and relationships of trace

elements in bone, and it is possible to use these changes as

markers of disease [1].

Bone diseases can derive from all the tissue components of

bone (cartilage, osteoid, fibrous tissue, and bone marrow

elements). Each tissue can be subject to inflammation and

benign or malignant tumors. It is well known that the tissues of

human bodies differ greatly in their contents of trace elements.

Our previous detailed studies have shown this using a chem-

ical composition analysis of bone tissues [5–31].

Chondroma (chondromas), also called exostosis or

osteochondroma, are benign tumors composed of mature

hyaline cartilage. They generally have limited growth

potential and are not locally aggressive. In the USA, benign

cartilage tumors account for 27.5 % of all bone tumors, and

international data for chondroma do not differ significantly

from the US figure [32]. About 60 % of chondroma occurs

in the small bones of the hands and feet. The next most

common sites are the long tubular bones. Of the long

bones, the femur is the most commonly involved (17 %).

The proximal and distal metaphysis of the femur is

involved more often than the diaphyses [32]. Histological

differentiation of chondroma can be extremely diffi-

cult [33]. To our knowledge, no data are available for the

trace element contents in bone affected by chondroma to

permit conclusions about their role in the etiology, patho-

genesis, and diagnostics of this disease.

The primary purpose of this study was to investigate the

possibilities of nondestructive instrumental neutron activation

analysis with high-resolution gamma-ray spectrometry of

long-lived radionuclides (INAA-LLR) for trace element

measurements in samples of osseous tissue. The second aim

was to evaluate the quality of obtained results. The third aim

was to compare the trace element mass fractions in intact bone

and bone affected by chondroma. The final aim was to esti-

mate the interelement correlations in intact bone and a dis-

turbance of these correlations in the chondroma tissue.

2 Experimental

Thirty-two adolescents and adults were included in this

study. The subjects were divided into two groups: refer-

ence and chondroma. The reference group consisted of 27

patients with intact bone (12 females and 15 males, aged

from 16 to 49 years, M � SD 34 � 11 years) who had died

from various non-bone-related causes, mainly unexpected

trauma. The intact cortical bone samples of the femur,

femoral neck, tibia, and iliac crest were collected at the

Department of Pathology, Obninsk City Hospital. Sam-

ples from 5 patients with chondroma (2 females and 3

males, 15–42 years old, M � SD 32 � 11 years) were

obtained from open biopsies or after operation from

resected specimens. All patients with bone diseases were

hospitalized at the Medical Radiological Research Centre.

In all cases, the diagnosis was confirmed by clinical and

histological data.

A titanium tool was used to cut and to scrub samples [2,

34]. All bone and tumor tissue samples were freeze-dried,

until constant mass was obtained, and pulverized using a

porcelain pestle and mortar. Then, samples, weighing about

100 mg, were wrapped separately in high-purity aluminum

foil, washed with rectified alcohol beforehand, and placed

in a nitric acid-washed quartz ampoule.

To determine the contents of the elements by compar-

ison with a known standard, biological synthetic standards

(BSSs) prepared from phenol–formaldehyde resins and

aliquots of commercial, chemically pure compounds were

used. Corrected certified values of BSS element contents

were reported by us previously [35]. Ten certified refer-

ence material (CRM) IAEA H-5 (Animal Bone) subsam-

ples weighing about 100 mg were analyzed under the same

conditions as the bone and tumor samples to estimate the

precision and accuracy of the results.

A vertical channel of the WWR-c research nuclear

reactor was used to determine the mass fraction of Ag, Co,

Cr, Fe, Hg, Rb, Sb, Se, and Zn by INAA-LLR. The quartz

ampoule with bone samples, tumor samples, standards, and

CRM was soldered, positioned in a transport aluminum

container, and exposed to a 100-h neutron irradiation in a

vertical channel with a thermal neutron flux of about

1013n=ðcm2 sÞ. Two months after irradiation, the samples

were reweighed and repacked in polyethylene ampoules for

spectroscopy. The duration of each measurement was from

1 to 10 h. To reduce the high intensity of 32P b-particles

ðT1=2 ¼ 14:3dÞ in the background, a beryllium filter was

used. A coaxial 98 cm3 Ge(Li) detector and a spectrometric

unit (NUC 8100), including a PC-coupled multichannel

analyzer, were used for measurements. The spectrometric

unit provided a 2.9 keV resolution at the 60Co 1332 keV

line. Sample–detector distance depended on the intensity of

gamma radiation from the sample and varied from 0 to 5

cm. The detector’s shielding was 5cm of lead.

A dedicated computer program of INAA mode opti-

mization was used [36]. Using the Microsoft Office Excel

program, the summary of statistics, arithmetic mean,

standard deviation, standard error of mean, minimum and

13 Page 2 of 8 V. Zaichick, S. Zaichick

123



maximum values, median, and percentiles with 0.025 and

0.975 levels were calculated for different trace element

mass fractions. The reliability of the differences in the

results between intact bone and chondroma tissue was

evaluated by a parametric Student’s t test and a nonpara-

metric Mann–Whitney U test. The Microsoft Office Excel

program was also used for the estimation of the Pearson

correlation coefficient between different pairs of the trace

element mass fractions in intact bone and bone affected by

chondroma.

3 Results and discussion

It was found that the equipment and parameters used for

the nondestructive neutron activation analysis in the study

allow a precise measurement of nine trace elements in the

samples of osseous tissue: Ag, Co, Cr, Fe, Hg, Rb, Sb, Se,

and Zn.

Information on used nuclear reactions, radionuclides,

gamma energies, and possible interferences is presented in

Table 1. 203Hg has the only line of 279.19 keV, which

coincides with the 279.54 keV (25 %) line of 75Se. How-

ever, 75Se has more intensive lines, 136 (56 %) and 265

keV (60 %) (Table 1). Using information about the 136

and 265 keV 75Se lines, the intensity of the 279.54 keV

line was calculated and the interference with the 203Hg

279.19 keV line was under control.

We determined the contents of all 9 trace elements (Ag,

Co, Cr, Fe, Hg, Rb, Sb, Se, and Zn) that cover the range of

8 elements (Co, Cr, Fe, Hg, Rb, Sb, Se, and Zn) with

certified and informative values in CRM IAEA H-5 (Ani-

mal Bone). Mean values of the contents (�SEM) for all

eight trace elements (Table 2) measured were in the range

of 95 % confidence interval values of the certificate [37].

Good agreement with the certified and informative data of

CRM indicates an acceptable accuracy of the results

obtained in the study of trace element contents in the

samples of osseous tissue presented in Fig. 1 and Tables 3,

4 and 5.

In the control group, the mass fractions of Co, Fe, and

Zn were measured in all samples. The mass fraction of Rb

was measured in 11 samples, and mass fractions of Ag, Cr,

Hg, Sb, and Se, in 10 samples. In the chondroma group, the

mass fraction of all nine trace elements was determined in

all samples. Figure 1 shows the individual data sets for the

Ag, Co, Cr, Fe, Hg, Rb, Sb, Se, and Zn mass fractions (mg/

kg, dry mass basis) in all samples of intact bone (1) and

chondroma tissue (2). Table 3 depicts the basic statistical

parameters (arithmetic mean, standard deviation, standard

error of mean, minimal and maximal values, median, per-

centiles with 0.025 and 0.975 levels) for the Ag, Co, Cr, Fe,

Hg, Rb, Sb, Se, and Zn mass fraction in intact bone and

bone affected by chondroma. This table shows basic sta-

tistical parameters valid for normal and abnormal distri-

bution of results. Statistical parameters, such as M, SD, and

SEM, are valid only for a normal distribution. However, as

a rule, no less a hundred results need to prove a law of

distribution. Therefore, Table 3 also includes some

parameters valid for an abnormal distribution, such as

median and percentiles.

The ratio of means and the reliability of the differences

between the mean values of Al, Co, Cr, Fe, Hg, Rb, Sb, Se,

and Zn mass fractions in intact bone and bone affected by

chondroma is presented in Table 4. It shows that, in the

chondroma group, the mean mass fraction of Ag, Co, Cr,

Fe, Se, and Zn is higher and, vice versa, the mass fraction

of Hg, Rb, and Sb is lower than in the normal bone tissue.

The parametric Student’s t test shows that, in the chon-

droma tissue, only the mean mass fraction of Co is sig-

nificantly (p� 0:0073) increased when compared with

those in normal bone. However, the nonparametric Mann–

Whitney U test shows significant differences for the Co,

Cr, Fe, Sb, Se, and Zn contents (Table 4).

The data from the intercorrelation calculations (values

of r—the Pearson correlation coefficient), including all

pairs of the chemical elements identified by us in the intact

bone and the bone affected by chondroma, are given in

Table 5. In the control group, a statistically significant

direct correlation was found, for example, between the Fe

and Se (r ¼ 0:60, p� 0:05), Fe and Co (r ¼ 0:55,

p� 0:01), Co and Hg (r ¼ 0:79, p� 0:01), Rb and Ag

(r ¼ 0:62, p� 0:05), and Rb and Cr (r ¼ 0:56, p� 0:05)

mass fractions (Table 5). In the same group, a pronounced

inverse correlation was observed between Fe and Ag

(r ¼ �0:80, p� 0:05). If some positive correlations

between the trace elements were predictable (e.g., Fe–Co),

the interpretation of other observed relationships requires

further study for a more complete understanding.

Table 1 Radionuclides and some of their characteristics used for

INAA-LLR of bone samples

Element Radionuclide Half-life c-energy used (keV)

Ag 110mAg 250.0 days 658, 1384

Co 60Co 5.64 years 1173, 1332

Cr 51Cr 27.8 days 320

Fe 59Fe 45.6 days 1099, 1292

Hg 203Hg 46.91 days 279a

Rb 86Rb 18.66 days 1076

Sb 124Sb 60.9 days 603, 1691

Se 75Se 120.4 days 136, 265, 401

Zn 65Zn 245.7 days 1115

a Interference with 75Se
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Table 2 INAA-LLR data of

trace elements of CRM IAEA

H-5 animal bone (mg/kg, dry

mass basis)

Element CRM IAEA H-5 This work results

M 95 % confidence interval Type of values M � SEM

Ag – – – 0.030 ± 0.011

Co 0.25 0.16–0.33 Informative value 0.22 ± 0.08

Cr 2.56 1.80–3.31 Informative value 1.44 ± 0.40

Fe 79 ± 11 76.6–84.8 Certified 84 ± 9

Hg 0.008 0.0012–0.0149 Informative value \0.01

Rb 1.07 0.25–1.90 Informative value \1.0

Sb 0.024 0.0127–0.0362 Informative value 0.023 ± 0.006

Se 0.054 0.0335–0.0740 Informative value 0.051 ± 0.009

Zn 89 ± 15 85.2–94.6 Certified 83.4 ± 1.8

M arithmetic mean, SEM standard error of mean

Fig. 1 Individual data sets for

Ag, Co, Cr, Fe, Hg, Rb, Sb, Se,

and Zn mass fractions (mg/kg

dry tissue) in intact bone (1) and

bone affected by chondroma (2)
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In the bone affected by chondroma, many significant

correlations between trace elements found in the control

group are no longer evident, for example direct correlations

between Fe and Co (Table 5). However, inverse correla-

tions between Ag and Co (r ¼ �0:89, p� 0:05) and Co

and Zn (r ¼ �0:82, p� 0:05) were observed (Table 5).

Thus, if we accept the levels and relationships of the trace

element mass fractions in the intact bone samples of the

control group as a norm, we have to conclude that in

chondroma tissue the levels and relationships of trace

elements are significantly changed.

The changes in the trace element contents of a bone

tumor in comparison with intact bone tissues may be

attributed to a cause or effect of neoplastic transformation.

Bone is a mineralized connective tissue. It is formed by

osteoblasts that deposit collagen and release Ca, Mg, and

phosphate ions that combine chemically within the col-

lagenous matrix into a crystalline mineral, known as bone

hydroxyapatite. Many trace elements are bone-seeking

elements, and they are closely associated with hydroxya-

patite [26–30]. Chondroma is classified as a benign bone

tumor. Our previous findings showed that the means of the

Table 3 Basic statistical

parameters for Al, Co, Cr, Fe,

Hg, Rb, Sb, Se, and Zn mass

fractions (mg/kg, dry mass

basis) in tissue of intact bone

and bone affected by

chondroma

Element M SD SEM Min Max Med P0.025 P0.975

Intact bone, n = 27

Ag 0.0027 0.0015 0.0005 0.00026 0.0047 0.0028 0.00032 0.0046

Co 0.0107 0.0070 0.0014 0.00370 0.0345 0.00785 0.00464 0.0288

Cr 0.274 0.182 0.057 0.110 0.669 0.202 0.117 0.629

Fe 51.2 46.3 9.3 9.20 173 30.2 9.68 155

Hg 0.0057 0.0044 0.0014 0.00100 0.0138 0.0053 0.00100 0.0133

Rb 3.68 1.58 0.48 0.970 6.57 3.30 1.40 6.41

Sb 0.0151 0.0102 0.0032 0.00600 0.0420 0.0139 0.00600 0.0364

Se 0.176 0.092 0.029 0.0550 0.358 0.169 0.0633 0.336

Zn 80.6 15.4 3.0 45.4 115 82.1 51.7 109

Chondroma, n = 5

Ag 0.0033 0.0007 0.0003 0.0025 0.00444 0.0031 0.0025 0.0043

Co 0.0208 0.0052 0.0023 0.0119 0.0257 0.0220 0.0129 0.0254

Cr 0.289 0.045 0.020 0.236 0.353 0.288 0.239 0.348

Fe 138 140 62 51.4 384 95.0 51.8 356

Hg 0.0023 0.0029 0.0013 0.0005 0.0072 0.0005 0.0005 0.0068

Rb 3.09 1.21 0.54 1.43 4.21 3.27 1.52 4.21

Sb 0.0082 0.0024 0.0011 0.0058 0.011 0.0079 0.0058 0.0109

Se 1.84 2.05 0.92 0.274 4.39 0.450 0.280 4.33

Zn 237 152 68 94.1 489 211 99.5 464

M arithmetic mean, SD standard deviation, SEM standard error of mean, Min minimum value, Max

maximum value, MED median, P0.025 percentile with 0.025 level, P0.975 percentile with 0.975 level

Table 4 Means (M � SEM,

mg/kg, dry mass basis), ratio of

means and the reliability of

difference between mean values

of Al, Co, Cr, Fe, Hg, Rb, Sb,

Se, and Zn mass fractions in

tissue of intact bone and bone

affected by chondroma

Element Intact bone Chondroma Ratio Student’s t test Mann–Whitney U test

M1 M2 M2/M1 p p

Ag 0.0027 ± 0.0005 0.0033 ± 0.0003 1.20 0.354 NS

Co 0.0107 ± 0.0014 0.0208 ± 0.0023 1.94 0.0073 B0.01

Cr 0.274 ± 0.057 0.289 ± 0.020 1.06 0.81 B0.01

Fe 51.2 ± 9.3 138 ± 62 2.70 0.24 B0.01

Hg 0.0057 ± 0.0014 0.0023 ± 0.0013 0.40 0.10 B0.05

Rb 3.68 ± 0.48 3.09 ± 0.54 0.84 0.43 NS

Sb 0.0151 ± 0.0032 0.0082 ± 0.0011 0.54 0.067 B0.01

Se 0.176 ± 0.029 1.84 ± 0.92 10.5 0.14 B0.01

Zn 80.6 ± 3.0 237 ± 68 2.94 0.083 B0.01

M arithmetic mean, SEM standard error of mean, NS not significant
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Ca and P mass fractions in the chondroma tissue are lower

than in normal bone, but the mean of the Ca/P ratio is

similar [38]. It suggested that chondroma continues to form

bone hydroxyapatite, but to a lesser degree than normal

bone.

Our findings show that the mean of the Fe mass fraction

in chondroma tissue samples was 2.7 times greater

(p� 0:01, U test) than in normal bone tissues (Table 4). It

is well known that an Fe mass fraction in the sample

depends mainly on the blood volumes in the tissues.

Chondroma is considered as a well-vascularized bone

tumor [39]. Thus, it is possible to speculate that chondroma

is characterized by an increase in the mean value of the Fe

mass fraction because the level of tumor vascularization is

higher than that of normal bone.

In the chondroma tissue, the mean Se mass fraction is

10.5 times higher (p� 0:01, U test) than in normal bone

(Table 4). The high Se level was reported in malignant

tumors of the ovary [40], lung [41], prostate [42],

breast [43, 44], intestine [45], and gastric tissue [46]. The

role played by Se in those tumors remains unknown, but in

general it is accepted that certain proteins containing Se

can mediate the protective effects against oxidative stress.

The literature-based analysis found the association of

neoplastic transformation with local oxidative stress.

Studies have shown that oxidative stress conditions play an

important role in both the initiation and progression of a

tumor by regulating molecules such as DNA, enhancers,

transcription factors, and cell cycle regulators [47].

However, the cause of increased Se in tumors, particularly

in chondroma, is not completely understood and requires

further study. The elevated levels of Co, Cr, Sb, and Zn in

chondroma tissue also need additional investigation.

The nondestructive INAA-LLR was developed and used

in this research study because this method has many defi-

nite advantages over other analytical methods, particularly

in clinical chemistry. For example, after nondestructive

INAA-LLR, there is a possibility to check the results for

some trace elements and to receive additional information

about other trace element contents by destructive analytical

methods, such as atomic absorption spectrometry, induc-

tively coupled plasma atomic emission spectrometry, and

inductively coupled plasma mass spectrometry, using the

same bone samples. Moreover, if a deep-cooled channel of

the nuclear reactor is available, the nondestructive INAA-

LLR allows determining trace element contents in the fresh

bone/tumor samples and combining a trace element study

with a histological investigation. It is also necessary to

keep in mind that the nondestructive methods are the cur-

rent gold-standard solution to control destructive analytical

techniques [1].

4 Conclusion

A nondestructive instrumental neutron activation anal-

ysis with high-resolution spectrometry of long-lived

radionuclides was developed and used in the study of trace

Table 5 Intercorrelations of

pairs of the trace element mass

fractions in tissue of intact bone

and bone affected by

chondroma

Tissue Element Co Cr Fe Hg Rb Sb Se Zn

Intact bone n = 27 Ag -0.23 0.51 -0.80a -0.02 0.62b 0.31 -0.45 0.38

Co – 0.16 0.55b 0.79a -0.10 0.08 0.52 0.17

Cr 0.16 – -0.48 0.51 0.56b -0.31 -0.08 0.46

Fe 0.55b -0.48 – 0.09 -0.54 -0.25 0.60b -0.17

Hg 0.79a 0.51 0.09 – 0.18 -0.13 0.35 -0.14

Rb -0.10 0.56b -0.54 0.18 – -0.05 -0.06 0.34

Sb 0.08 -0.31 -0.25 -0.13 -0.05 – 0.04 0.22

Se 0.52 -0.08 0.60b 0.35 -0.06 0.04 – 0.24

Zn 0.17 0.46 -0.17 -0.14 0.34 0.22 0.24 –

Chondroma n = 5 Ag -0.89b -0.12 -0.24 0.19 0.55 -0.17 -0.08 0.56

Co – 0.10 0.02 -0.29 -0.34 0.46 0.26 -0.82a

Cr 0.10 – -0.43 -0.60 0.64 -0.34 -0.29 0.38

Fe 0.02 -0.43 – -0.21 -0.42 -0.54 0.61 -0.03

Hg -0.29 -0.60 -0.21 – -0.60 0.46 -0.58 0.02

Rb -0.34 0.64 -0.42 -0.60 – -0.28 0.11 0.39

Sb 0.46 -0.34 -0.54 0.46 -0.28 – -0.13 -0.74

Se 0.26 -0.29 0.61 -0.58 0.11 -0.13 – -0.45

Zn -0.82b 0.38 -0.03 0.02 0.39 -0.74 -0.45 –

Statistically significant difference: ap B 0.05; b p B 0.01
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element contents in samples of osseous tissue. It was

shown that INAA-LLR is an adequate analytical tool for

the nondestructive, precise determination of the mass

fraction of 9 chemical elements (Ag, Co, Cr, Fe, Hg, Rb,

Sb, Se, and Zn) in human intact bone samples and samples

of intraosseous lesions weighing about 100 mg. The

method developed in the study has many definite advan-

tages over other analytical methods, particularly in clinical

chemistry.
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