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Abstract The integrated gradient of a quadrupole will be

deviated by a close neighboring sextupole, and this is

called the effect of fringe field interference. Using the Lie

algebra techniques, an analytical expression for the beta-

tron tune shift due to this effect has been derived. The

process does not depend on the supposition of the thin-lens

quadrupoles. It can be used to estimate the tune shift dif-

ferences between the designed lattice and the one including

the fringe field interference. More generally, the method

can be applied to other kinds of fringe field interference.

Keywords Fringe field interference � Lie algebra

technique � Betatron tune shift

1 Introduction

BEPC-II was upgraded from the previous Beijing Electron

Positron Collider (BEPC), and its design luminosity is

1 9 1033 cm-2 s-1 at 1.89 GeV. Since BEPC-II uses the

same tunnel as the previous BEPC [1], the longitudinal space

occupied by the quads and sexts in four arcs is highly

squeezed. As a result, the fringe field interferences are inevi-

table. We have already investigated the relative effects [2],

including the changes in the integrated gradients and betatron

tune shifts due to field interferences via 3D multipole expan-

sion techniques and beam tracking, respectively. The 3D

simulation model of a quad-sext assembly is shown in Fig. 1.

For the BEPC-II case, the results show that the design value of

the integrated gradient is reduced by 0.57 % due to the

neighboring sext. The changes in horizontal tune and vertical

tune are-0.0266 and-0.0335, respectively.According to the

theory of beam–beam interactions, to arrive at higher lumi-

nosity, the tunes should be very close to a half-integer, so

optimizing transverse tune is one of the most important issues

at the commissioning stage, which needs us to control the

betatron tune shift as accurately as possible. The betatron tune

shift due to a distributed gradient error has long been estab-

lished [3]. It involves an integral expression, and the rapid

estimation of the tune shift needs a b function to be chosen at

the quad center. For a thick-lens quad, this approximation

would not be accurate enough. Therefore, it is necessary to

modify the classical tune shift formula to a higher precision.

Section 2 presents the detailed process of derivation of

the betatron tune shift using Lie algebra techniques. In

Sect. 3, the tune shifts, based on the models of both thick-

lens quad and thin-lens quad, are compared with the beam

tracking results via Methodical Accelerator Design (MAD)

[4]. Section 4 gives a brief summary.

2 Derivation to betatron tune shift

For a quad with a distributed gradient error, the betatron

tune shift is [3]

Dlx;y ¼ 1

4p

Z
bx;yðsÞDK2ðsÞds; ð1Þ

where bx,y is the Twiss function in a quad and DK2 is the

strength error of a quad. If we want to make a rapid esti-

mation, the b function will be substituted as a constant,

usually the value at the quad center. In other words, the
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thin-lens quad is adopted. For a quad with a finite length, in

which the b function changes sharply, e.g., the quads in the

interaction region, the thin-lens quad is no longer accurate.

The method used in this section gives the betatron tune

shift of a thick-lens quad with a gradient error, and the

results can be applied to the rapid tune shift estimations.

The analytical approach followed here is inspired by

Irwin and Wang’s paper [5]. They proposed a Lie algebra

technique to obtain the explicit soft fringe maps of a quad.

In their calculations, the Hamiltonian was sliced into many

thin pieces and then these thin pieces were concatenated to

form a thick quad. By successive application of the simi-

larity transformation and BCH formula, the soft fringe

maps were constructed after performing the integral over

the whole quad. The normal quad Hamiltonian with a small

d perturbation for the on-momentum particle has the form

HQuad ¼ 1

2
p2x þ p2y

� �
þ K2

2
1� dð Þ x2 � y2

� �

¼ H2 �
K2d
2

x2 � y2
� �

¼ H2 þ Hd

; ð2Þ

wherex, y are the canonical coordinates,px, py are the canonical

particle momenta, and d is the reduction of the integrated

gradient due to the effects of fringe field interference. The

Hamiltonian is separated into two parts. Hd represents the

perturbed Hamiltonian with a small quantity andH2 denotes a

perfect quad. Adopting the procedures mentioned above, the

map of a perturbed quad can be written as the product

M ¼ Ml=2e
�:Fd:Ml=2; ð3Þ

where Ml/2 is the linear map across half the length of the

thick quad and Fd is the Lie generator of the exponential

transformation

Fd ¼
Z l=2

�l=2

HdðxðsÞ; yðsÞÞds

� 1

2

Z l=2

�l=2

ds

Z l=2

s

HdðxðsÞ; yðsÞÞ;Hdðxðs0Þ; yðs0ÞÞ½ �ds0. . .;

¼ F1 þ F2 þ � � � ;
ð4Þ

where Fd is the total kicks from the thick quad, in which

F1 and F2 represent the first and the second kick effects,

respectively. The latter is also known as the effects of

kick on kick. In BEPC-II case, the second integral, F2, is

smaller than the first integral, F1, by a factor d, so the

second-order and higher integrals are neglected here.

With the similarity transformation, the canonical coordi-

nates, x(s) and y(s), are expressed at the center of the

quad, for K2[ 0,

xðsÞ ¼ cos
ffiffiffiffiffiffiffiffi
K2j j

p
s

� �
x0 þ

1ffiffiffiffiffiffiffiffi
K2j j

p sin
ffiffiffiffiffiffiffiffi
K2j j

p
s

� �
px;0

yðsÞ ¼ cosh
ffiffiffiffiffiffiffiffi
K2j j

p
s

� �
y0 þ

1ffiffiffiffiffiffiffiffi
K2j j

p sinh
ffiffiffiffiffiffiffiffi
K2j j

p
s

� �
py;0

;

ð5Þ

where the subscript ‘‘0’’ means the relative coordinates at

s = 0, the center of the quad. Substituting Eq. (5) into

Eq. (4) and performing the integral, the generator Fd has

the form

Fd ¼
1

4
K2ld x20 1þ sin/

/

� �
þ p2x;0

1

K2j j 1� sin/
/

� �	

�y20 1þ sinh/
/

� �
� p2y;0

1

K2j j 1� sinh/
/

� �


where / ¼
ffiffiffiffiffiffiffiffi
K2j j

p
l;

ð6Þ

in agreement with the result given in Ref. [6]. On the

R.H.S. of Eq. (6), the square terms, including px and py,

are the higher-order effect of a thick quad. They are

smaller than other terms by a factor |K2|
-1b-2. In our

case, it is at least equal to 10-2 and neglected here. We

can also use the same procedures to calculate Fd for the

case of K2\ 0. Expressing Fd in terms of action angle

coordinates and averaging the Fd over the betatron pha-

ses, Ux,y, we have

Fdh i ¼

1

8p
K2ld 1þ sin/

/

� �
Jxbx � 1þ sinh/

/

� �
Jyby

	 

K2[ 0ð Þ

1

8p
K2ld 1þ sinh/

/

� �
Jxbx � 1þ sin/

/

� �
Jyby

	 

K2\0ð Þ

8>>><
>>>:

;

ð7Þ

where Fh id denotes the perturbed Hamiltonian representing

the effect of fringe fields interference. The betatron tune

shifts can be solved according to

Fig. 1 Simulation model for BEPC-II ring quad–sext assembly (from

left to right: quad magnet, sext magnet)
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Dlx ¼
DUx

2p
¼ 1

2p
Fdh i;Ux½ � ¼ 1

2p
o Fdh i
oJx

; ð8Þ

where the Ux is the horizontal phase advance and Jx is the

action coordinate. According to Eq. (8), the derivatives of

Fh id with respect to Jx,y yield the betatron tune shifts:

Dlx ¼ � 1

8p

X
Q

K2ld 1þ sin/
/

� �
bx

	 


Dly ¼
1

8p

X
Q

K2ld 1þ sinh/
/

� �
by

	 


8>>>><
>>>>:

ðfor K2 [ 0Þ

Dlx ¼ � 1

8p

X
Q

K2ld 1þ sinh/
/

� �
bx

	 


Dly ¼
1

8p

X
Q

K2ld 1þ sin/
/

� �
by

	 


8>>>><
>>>>:

ðfor K2\0Þ

;

ð9Þ

where the sums are over all quads interfered with the

adjacent sexts. For the common strength quads, it is a good

approximation to set

1þ sin/
/

� 1þ sinh/
/

� 2; ð10Þ

then the betatron tune shifts are simplified to the case of a

thin-lens quad [7]

Dlx
Dly

� �
¼ �

�

� �
1

4p

X
Q

bx;yDðK2lÞ ; ð11Þ

where the upper sign for focusing quads is K2[ 0 and the

lower sign for defocusing quads is K2\ 0.

3 Application to BEPC-II

In the BEPC-II arcs, the values of sin/// are between

0.971 and 0.987 and the values of sinh/// are between

1.012 and 1.028. This means that Eq. (9) furnishes a cor-

rection of about 3 % to the betatron tune shift calculated

via Eq. (11). To verify this conclusion, we change the

strengths of 36 quads in arcs by 0.57 %, evaluate the

betatron tune shifts obtained from both Eqs. (9) and (11),

and finally compare corresponding results with MAD,

respectively. The tune shifts calculated via the three

methods are listed in Table 1. It can be seen that the tune

shifts obtained based on the thick quad model are more

accurate than theories based on the thin quad. This verifies

the conclusion. Usually, it is a reasonably good approxi-

mation to treat a practical quad as a thin-lens element if

these quads are not sufficiently strong. But if this is not so,

the corrections must be taken into account. For instance,

we consider a typical quad with a gradient of 15 T/m and a

length of 0.5 m. The correction factors sin/// and sinh///
arrive at about 10 %, and this cannot be neglected, obvi-

ously. In the BEPC-II ring (lx = 7.51, ly = 5.56), the

average K for focusing Quads is a bit larger than the

average K for defocusing Quads. That is why there is still a

relatively larger difference between the thick-lens quad

model and MAD tracking in the horizontal direction.

4 Conclusion

In this paper, an analytical expression of the tune shift

due to quad error is obtained based on the thick-lens quad

model and Lie algebra techniques, and the results verify

that this expression will give a more accurate evaluation. A

small correction needs to be considered when the thin-lens

quad model is no longer applicable. The difference

between the thick-lens quad model and MAD tracking will

be studied in further works.
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