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Abstract Monte Carlo transport simulations of a full-core

reactor with a high-fidelity structure have been made pos-

sible by modern-day computing capabilities. Performing

transport–burnup calculations of a full-core model typi-

cally includes millions of burnup areas requiring hundreds

of gigabytes of memory for burnup-related tallies. This

paper presents the study of a parallel computing method for

full-core Monte Carlo transport–burnup calculations and

the development of a thread-level data decomposition

method. The proposed method decomposes tally accumu-

lators into different threads and improves the parallel

communication pattern and memory access efficiency. A

typical pressurized water reactor burnup assembly along

with the benchmark for evaluation and validation of reactor

simulations model was used to test the proposed method.

The result indicates that the method effectively reduces

memory consumption and maintains high parallel

efficiency.

Keywords Monte Carlo � Burnup calculation � Data
decomposition � BEAVRS � SuperMC

1 Introduction

In typical transport–burnup calculations, approximately

2000 nuclide species are involved in precise burnup eval-

uations, wherein approximately 300 nuclides carry nuclear

cross-section data, and their reaction rates are tallied in

transport simulations. In addition, for each burnup area, the

decay constants of all nuclides—obtained from the decay

library—are considered in burnup calculations. Three-di-

mensional high-fidelity full-core models, such as the

benchmark for evaluation and validation of reactor simu-

lations (BEAVRS) [1] model, involve millions of burnup

areas, which require hundreds of gigabytes of memory.

Memory consumption of this magnitude is usually too

large for computing nodes even in supercomputer centers.

Consequently, the full-core Monte Carlo transport–burnup

calculation is highly restricted by its massive memory

consumption [2].

Two parallel computing methods, namely domain

decomposition and tally data decomposition, have been

reportedly used to address the memory consumption

problem mentioned above [3]. The domain decomposition

method decomposes the model geometry into a number of

small regions. It then assigns these small regions as local

regions to different processes. Each process performs the

transport–burnup calculation within its local region. In this

method, particles that traverse across the boundary of a

local region undergo the corresponding being process

performed in the adjacent region. The domain decompo-

sition method, however, has drawbacks, such as
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inconsistent variance [4], load imbalance, and low parallel

efficiency. Romano [5, 6] proposed the ‘‘tally server’’ data

decomposition method for Monte Carlo transport simula-

tions, wherein the basic idea is to divide the parallel pro-

cessor into a computing unit and a storage unit (called tally

servers). The computing unit is solely responsible for

particle transport simulations, while the storage unit is

responsible for the accumulation and storage of tallies.

Liang [7] proposed an improvement to this method. He

suggested that the tally accumulators be decomposed and

stored in equal amounts with each processor being

responsible for both particle transport simulation and tally

accumulation (including sending and receiving of track-

length-based flux). This peer-to-peer processor relationship

makes the program more suitable for large-scale memory

taxing Monte Carlo transport–burnup calculations. How-

ever, Liang also mentioned in his paper that the material

data in each process also occupies a lot of memory and is

not decomposed. When the number of burnup areas add up

to a million, the material data occupy approximately

4.8 GB per process. Assuming that each hyper-node has 20

processes, the material data would occupy 96 GB of

memory, which becomes a factor limiting the utility of

Monte Carlo transport–burnup calculations. Shared mem-

ory can reduce data redundancy [8], however, combining it

with the tally data decomposition method leads to thread

race and communication conflicts [9].

In this paper, study of a parallel computing method for

full-core Monte Carlo transport–burnup calculations is

presented along with the development of a thread-level

data decomposition method to solve aforementioned

problems. The proposed method was implemented based

on the super Monte Carlo program for nuclear and radia-

tion simulation (SuperMC) [10, 11] developed by the FDS

Team [12–14]. Memory consumption and calculation

efficiency were tested with a typical pressurized water

reactor (PWR) burnup assembly and BEAVRS model.

2 Methods

2.1 Thread-level data decomposition

The tally data decomposition method employs a ‘‘divide

and conquer’’ strategy, wherein tasks are divided into dif-

ferent subtasks to be resolved separately, and some rules

are established to ensure correctness of results. This

method is illustrated in Fig. 1.

The thread-level data decomposition method has been

improved on the lines of the data decomposition method of

Liang—(1) the tally accumulators are managed by the

thread, instead of the process previously; (2) multi-thread

technology is used to share material data in one process

thereby reducing data redundancy; (3) solved resource

competition of memory access and communication caused

by combining multi-thread memory sharing and data

decomposition.

In Monte Carlo transport–burnup calculations, memory

consumption mainly arises because of three types of data—

geometry and material data used to describe the model,

nuclear cross-section data, i.e., particle data used in trans-

port calculations, and data concerning burnup areas

including reaction rate tallies. The tallies of nuclide reac-

tion rates account for maximum memory consumption due

to presence of millions of burnup areas. In burnup calcu-

lations, burnup areas are relatively independent of each

other, and these tallies use the same data structure in the

program thereby making remote accumulating operations

practical. In this work, burnup areas are decomposed

equally among different threads using MPI [15] along with

OpenMP [16]. For materials, geometry, nuclear cross-sec-

tion data, and so on, the proposed method uses OpenMP to

share them within a process. As such, different threads

could read the same material, geometry, and nuclear cross-

section data thereby significantly reducing memory

redundancy. Particle data is relatively independent and

takes up less memory; as such, it is allocated to different

threads by MPI ? OpenMP.

The main parts comprising the thread-level data

decomposition are tally decomposition, communication,

and accumulation, which are different compared to other

data decomposition methods and are shown by red dotted

boxes in Fig. 2. To avoid MPI calls that are too frequent

and increase communication efficiency, the tallies gener-

ated by each particle are initially stored in a message

buffer. At the end of the particle history, the tally buffer, if

full, is cleared, and the information stored therein is sent to

corresponding thread via non-blocking MPI calls.

2.2 Tally communication

Tally data are transferred using the message-passing

interface (MPI), which is a communication protocol in

parallel programming. A virtual channel in MPI is uniquely

identified by tuples (c, s, t) (communicator, source, tag) on

the receiver side and (c, r, t) (communicator, receiver, tag)

on the sender side. False matching can be avoided by using

different tags (or communicators) for each thread [9]. Thus,

different threads in one process that simultaneously com-

municate with threads in another process with the same tag,

source, and communicator will lead to a conflict as shown

in Fig. 3a. This can be attributed to the same message

matching mechanism being used.

To resolve this conflict, a fine-grained positioning mode

is proposed. Two rules have been defined for sending and

receiving messages—(a) each thread can only receive one
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tag, and (b) messages that target different threads should be

defined using different tag values. With these rules (shown

in Fig. 3b), messages can be sent directly from one thread

to another without any conflict, which significantly

improves communication efficiency.

2.3 Tally accumulation

In thread-level data decomposition, different threads

may score for the same tally accumulator. If the same

memory location is updated simultaneously by more than

two threads, it will lead to competition between threads

known as thread race which is shown in Fig. 4a. Thus, to

prevent the error caused by the thread race, scoring oper-

ations must be protected by a thread lock. However, the

thread lock operation is extremely time consuming, since

all other threads are blocked once a thread acquires a

thread lock.

To avoid this time consumption caused by the thread

lock, a lockless concurrency method is introduced for

memory access, wherein each thread is only allowed to

accumulate the tally scores assigned to it. For example,

Fig. 4b shows that tally 1 calculated by thread 2 will be

sent to thread 1 using MPI communication like Sect. 2.2,

instead of being directly accumulated by thread 2. This

ensures that different threads do not update the same

memory region simultaneously thereby eliminating the

thread lock.

3 Results and discussion

Performance of the proposed method was tested using a

PWR burnup assembly model, and its capability of han-

dling a high-fidelity reactor was verified using the

BEAVRS model. The tests were performed on supercom-

puter nodes, each node comprising of 20 cores and 64 GB

memory. Sixteen such nodes were used.

3.1 Pin cell model

Like any other code, a verification process is necessary

for SuperMC as well. In our test, a pin cell benchmark

exercise, described by Xu [17], was utilized to test the

validity of SuperMC. The results of MCODE and CASMO

techniques were taken directly from Xu [17]. The main

features of SuperMC, MCODE, and CASMO-4 are listed

and compared in Table 1. An eigenvalue comparison is

Fig. 1 (Color online) a Serial computing, b parallel computing, c parallel computing of tally data decomposition

Decompose  burnup 
areas into threads

Simulate new particle 

Transport simulation 
start 

Burnup calculation

Update materials

Last burnup 
step?

End 

All particles 
simulation end?

Yes

No

Yes
Tally communication 

between threads

Accumulate tallies

Calculate reaction 
rates  and put them 

into sendbuffer

No

End of current 
particle simulation

Is sendbuffer 
full?

No

Yes

Last tally 
communication 
between threads

Accumulate last 
tallies

Fig. 2 Process workflow of thread-level data decomposition
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shown in Fig. 5, and a comparison between methods with

different isotope compositions is listed in Table 2.

Figure 5 shows the comparison between eigenvalue

histories of SuperMC, CASMO-4, and MCODE. It can be

seen from the figure that there exists a nearly constant k-inf

difference between SuperMC and CASMO-4. It then grows

as an approximately linear function. At a burnup of

100 MWd/kg, the difference in eigenvalues was observed

to be about 0.0119. In addition to eigenvalue comparison,

an isotope composition comparison at 100 MWd/kg is

listed in Table 2. Most material compositions agreed well

with CASMO-4 within typical uncertainties. This verified

the transport–burnup capacity of SuperMC.

3.2 PWR assembly

The PWR burnup assembly model [18] contains 264

fuel pins with 235U enrichment of 3.1% and 25 guide tubes.

Each fuel pin is divided into 50 layers axially for burnup

calculations with about 13,000 burnup areas, as shown in

Fig. 6 (Color online).

Fig. 3 (Color online) Tally communication: a coarse-grained positioning communication, b fine-grained positioning communication

Fig. 4 (Color online) Diagram of tally accumulation: a memory access: lock, b memory access: lockless

Table 1 Main features of

different burnup computational

tools

CASMO-4 MCODE SuperMC

Cross-section libraries ENDF/B-6, JEF2.2 ENDF/B-6 ENDF/B-7

Code Developer Studsvic MIT FDS

Transport treatment KRAM characteristic Monte Carlo Monte Carlo

Resonance treatment Collision probability Monte Carlo Monte Carlo

Number of energy groups 70 Continuous Continuous

Burnup algorithm STNPC STNPC STNPC

Actinide representation 231Th thru 252Cf 39 37

Fission products * 200 100 199
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The assembly is depleted for 1 year with constant

power, and the simulation process is separated into five

equal time steps. The total simulated particle history of

different threads is kept constant (weak scaling). Each

thread employed 200 generations with 1000 neutron his-

tories per generation, and the first 50 generations were

discarded.

The performance of the thread-level data decomposition

method was evaluated through three tests. First, perfor-

mance of the lockless concurrency memory access pattern

was evaluated and compared to that of the locked pattern.

Figure 7a shows that the computing time of the lock pat-

tern is almost 10 times that of the lockless pattern thereby

indicating that the latter can effectively reduce contention

for shared resources. Next, performance of the fine-grained

positioning mode was evaluated and compared to that of

the coarse-grained positioning mode. Figure 7b illustrates

that the coarse-grained positioning communication time is

almost twice that of the fine-grained positioning commu-

nication, which proves that the introduced fine-grained

positioning communication mode offers great advantages

in data transfer. Finally, the performance of thread-level

data decomposition was compared to that of process-level

data decomposition. For the PWR model, using tally data

Fig. 5 (Color online) Eigenvalue comparison between SuperMC,

CASMO-4, and MCODE

Table 2 Fractional difference between SuperMC, CASMO-4, and MCODE in nuclide concentration at 100 MWd/kg

Isotopes CASMO-4 (#/cm3) SuperMC (#/cm3) SuperMC Error (%) MCODE Error (%) Max typical uncertainties (%)

95Mo 1.22 9 1020 1.24 9 1020 - 1.41 - 0.17 1.85
99Tc 1.17 9 1020 1.19 9 1020 - 1.83 4.54 4.21
101Ru 1.19 9 1020 1.20 9 1020 - 0.61 - 0.30 1.76
103Rh 4.60 9 1019 4.74 9 1019 - 3.01 3.30 5.40
109Ag 6.99 9 1018 7.77 9 1018 - 11.14 14.62 10.21
133Cs 1.15 9 1020 1.22 9 1020 - 6.54 8.15 5.60
135Cs 6.98 9 1019 7.08 9 1019 - 1.40 0.35 3.63
143Nd 7.42 9 1019 7.39 9 1019 0.47 0.34 4.51
145Nd 7.11 9 1019 7.02 9 1019 1.25 -0.08 1.46
147Sm 9.57 9 1018 1.07 9 1019 - 11.79 14.09 9.12
149Sm 1.25 9 1017 1.13 9 1017 9.28 -5.83 15.61
150Sm 2.68 9 1019 2.83 9 1019 - 5.77 8.08 8.50
151Sm 7.68 9 1017 6.21 9 1017 19.16 -10.27 22.31
152Sm 9.39 9 1018 7.84 9 1018 16.55 -16.19 9.68
153Eu 1.18 9 1019 1.05 9 1019 11.30 -11.36 8.52
234U 6.71 9 1018 7.08 9 1018 - 5.47 1.20 8.99
235U 2.60 9 1020 2.49 9 1020 4.05 2.10 8.12
238U 1.97 9 1022 1.96 9 1022 0.36 -0.17 2.60
237Np 3.42 9 1019 3.33 9 1019 2.73 -8.90 9.42
238Pu 1.97 9 1019 1.88 9 1019 4.40 -8.26 13.86
239Pu 1.48 9 1020 1.50 9 1020 - 1.58 5.61 7.12
240Pu 6.31 9 1019 6.62 9 1019 - 4.90 8.77 5.27
241Pu 4.28 9 1019 4.40 9 1019 - 2.80 5.13 6.86
242Pu 2.62 9 1019 2.70 9 1019 - 2.95 -3.05 8.39
241Am 2.35 9 1018 2.50 9 1018 - 6.36 9.96 5.29
242mAm 3.38 9 1016 4.01 9 1016 - 18.54 103 NA
243Am 6.23 9 1018 8.13 9 1018 - 30.46 23.22 10.40
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decomposition method, majority of the material and

nuclear cross-section data accounted for 1 GB of memory

for each process, which corresponds to 20 GB memory for

each node with 20 processes. However, with the thread-

level data decomposition method, the material and nuclear

cross-section data occupied approximately 1 GB of mem-

ory for each process with 10 threads thereby accounting for

2 GB of memory for each node with two processes.

Meanwhile, both methods required 2 GB of memory for

tally data per node. Figure 7c shows that the memory

consumption of the thread-level data decomposition

method is almost 10 times compared to the process-level

data decomposition method. The factor by which the

memory consumption is reduced is close to the number of

threads in each process. This shows that the developed

method could effectively reduce memory consumption and

substantially avoid data redundancy in a single process.

3.3 BEAVRS model

In 2003, Massachusetts Institute of Technology (MIT)

released its BEAVRS model based on a commercial reactor

that includes detailed specifications and measured data of a

hot zero power condition and two cycles. The model

consists of 193 fuel assemblies with a 17 9 17 pin

arrangement and three 235U enrichments of 1.6, 2.4, and

3.1% [19].

The full-core transport–burnup calculation was per-

formed with the thread-level data decomposition method.

The number of burnup areas amounted to 1 million, which

Fig. 6 (Color online) PWR assembly model

(a) (b)

(c)

Fig. 7 (Color online) a Performance of locked versus lockless memory accesses (10 threads were used per process), b performance of fine-

grained versus coarse-grained communication (10 threads were used per process), c performance of different data decomposition methods
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is unacceptable for any common parallel computing

method. A series of tests were performed using strong

scaling with the same amount of work across all threads. In

the calculations, 10 million particles were simulated per

cycle. Each burnup step comprised of 150 inactive cycles

and 850 active cycles. There were three such burnup steps.

The parallel performance is shown in Fig. 8. This fig-

ure shows that as the number of threads increased, the

parallel efficiency was maintained high, and the memory

consumption at each node was rapidly reduced.

In addition, the transport–burnup calculation results

were compared to the measured data, and the 235U fission

rate given by the burnup calculation on day 81 is shown in

Fig. 9. Each box represents a fuel assembly. Three

numerical values are presented, which include

experimental and SuperMC calculation results, as well as

the difference between the two results. This finding shows

that most of the differences are within 5% of one another,

which is smaller than that obtained by Kelly [20].

4 Conclusion

This work developed and implemented the thread-level

data decomposition method, wherein the tally accumulators

are decomposed to threads, while residual memory is

shared in a single process. Lockless concurrency pattern

and fine-grained positioning mode are used in this method

to reduce contention for shared hardware resources. The

performance and capacity of the developed method was

tested using the typical PWR burnup assembly and

BEAVRS model. It was demonstrated that the method

could meet the memory demand of a full-core high-fidelity

transport–burnup calculation and yet maintain high parallel

efficiency.
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