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A neural network to predict reactor core behaviors∗
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The global fuel management problem in BWRs (Boiling Water Reactors) can be understood as a very complex
optimization problem, where the variables represent design decisions and the quality assessment of each solution
is done through a complex and computational expensive simulation. This last aspect is the major impediment
to perform an extensive exploration of the design space, mainly due to the time lost evaluating non promising
solutions. In this work, we show how we can train a Multi-Layer Perceptron (MLP) to predict the reactor
behavior for a given configuration. The trained MLP is able to evaluate the configurations immediately, thus
allowing performing an exhaustive evaluation of the possible configurations derived from a stock of fuel lattices,
fuel reload patterns and control rods patterns. For our particular problem, the number of configurations is
approximately 7.7× 1010; the evaluation with the core simulator would need above 200 years, while only 100
hours were required with our approach to discern between bad and good configurations. The later were then
evaluated by the simulator and we confirm the MLP usefulness. The good core configurations reached the
energy requirements, satisfied the safety parameter constrains and they could reduce uranium enrichment costs.
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I. INTRODUCTION

The global fuel management problem in BWRs (Boiling
Water Reactors) can be understood as a very complex opti-
mization problem, where the variables represent design de-
cisions and the quality assessment of each solution is done
through a complex and computational expensive simulation.
This last aspect is the major impediment to perform an exten-
sive exploration of the design space, mainly due to the time
lost evaluating non promising solutions.

In a previous work [1], we presented a Recurrent Neu-
ral Network (RNN) to find good configurations from several
stocks of optimized solutions to fuel lattice design, fuel load
pattern design and control rod patterns design. These partial
solutions to the global fuel management problem are combined
to find a core configuration of fresh fuel bundles, a fuel reload
pattern and core exposition calculus are made through con-
trol rod patterns in several burnup steps in the cycle length.
SIMULATE-3 [2] core simulator was used to calculate the
reactor behavior of those configurations. So, thermal limits,
throughout of the cycle and cold Shutdown Margin (SDM) at
the beginning of the cycle are calculated in order to determine
the quality of the configurations. Fuel lattices with several av-
erage uranium enrichments were used in the fuel lattice stock.
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In the first instance (Ref. [1]), it was possible to find good con-
figurations with average uranium enrichments lower than a ref-
erence case.

Fuel lattices stock was created by Neural Networks (NN) [3]
and Path Relinking [4] techniques. Both optimization tech-
niques use CASMO4 [5] to calculate the lattice parameters:
local power peaking factor and a reactivity value, both at the
beginning of the fuel lattice life. Fuel reloads were generated
using NN [6] and Tabu Search [7]. Both optimization tech-
niques use SIMULATE-3 to calculate the end of cycle under
Haling condition [8]. Finally, control rod patterns were gener-
ated by Tabu Search [9] and Ant Colony System [10] optimiza-
tion techniques. SIMULATE-3 was used to determine thermal
limits throughout the cycle.

In this contribution our aim is to address the following re-
search questions:

1) Is it possible to design a surrogate model of the simulator
that allows performing a fast discrimination between good and
bad configurations?

2) Having the previous model, would it be possible to eval-
uate the set of all the potential configurations arising from the
combinations of alternatives in the stocks available?

In order to address these questions, we propose a Multi-
Layer Perceptron (MLP) as a simplified model of the simu-
lator to discern between bad or good core configurations. In
Ref. [11], an adaptive classifier model is used to solve opti-
mization problems. The classifier eliminates non-feasible so-
lutions reducing the cpu time to solve the problem. In our
paper, the MLP eliminates bad core configurations.

The rest of the paper is organized as follows. In Sec. II we
briefly describe the MLP concepts. Then in Sec. III, we show
how the MLP was trained. In Sec. IV and Sec. V, we show
some practical results with the trained MLP. Finally, conclu-
sions and references are shown.
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II. MULTI-LAYER PERCEPTRON NEURAL NETWORK
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Fig. 1. Typical MLP Architecture.

The artificial neural network is a computer model. It can be
used to pattern recognize, prediction, memory, etc. There are
several neural network models. One of the most popular is the
Multi-Layer Perceptron (MLP) [12]. In Fig. 1, we show the
typical architecture of this kind of neural network.

The neural network is composed by one input layer, one or
more hidden layers and one output layer. Input layer collects
external information and distributes it to hidden layers. Hidden
layers process the information and output layer shows results.
Each layer has several neurons. Neuron is the lowest informa-
tion processor. The neuron makes a weighted sum of all its
input signals:

Ii =
∑

wijxj , (1)

where Ii is the net input to i-th neuron, wij is the weight con-
nection between i-th neuron (in a previous layer) and j-th neu-
ron (in a current layer), xj is the signal between both neurons.
Then net input is converted to an activation signal according to
the activation function f(Ii):

Ai = fIi. (2)

Activation function gives a trigger threshold for the neuron.
If net input is lower than the threshold, the neuron is inhib-
ited. If net input is greater than the threshold, the neuron is
excited. These inhibitory or excitatory signals are propagated
by all neurons in the network until a global response is gener-
ated.

Weights connection between neurons must be adjusted in or-
der that MLP response becomes adequate to the input signal.
This process is named neural network training. Back propaga-
tion is the most popular training algorithm used for MLP. First,
the input signal is passed through of layers until a response is
generated. Second, the response is compared with the desired
output and an error signal is generated. Third, the error signal
is back propagated to first hidden layer, updating weight con-
nections. The process is repeated until the error signal is lower
than the tolerance.

III. DATA SETS AND TRAINING PROCESS

Neural network training was made using a set of 2680 sam-
ples. An explanation about how these samples were obtained
will be shown in the next section. Each sample is a pair of
input and output vectors where the former is a possible core
reactor configuration (partial solutions to the global problem),
and the latter is a set of core safety parameters (thermal limits,
keff and SDM) which are calculated by SIMULATE-3 for that
core reactor configuration. The values in the output vectors are
aggregated into a single real value.

Input vectors:

For this study an 18-month equilibrium fuel cycle is used.
The fuel reload has two fresh fuel batches. Both fresh fuel
batches have a similar axial design: one node of natural ura-
nium at the bottom, 8 nodes with 4.01% U235 and variable
gadolinia concentration, 6 nodes with 4.01% U235 and high
gadolinia concentration, 8 nodes with 3.96% U235 and high
gadolinia concentration. Finally, two nodes of natural uranium
at the top of fuel bundle.

A variable number of fuel lattices for three segments of both
fresh fuel batches were generated by Path Relinking and Neu-
ral Networks. Fuel reloads were generated using Neural Net-
works and Tabu Search. Control rod patterns were generated
by Tabu Search and Ant Colony System optimization tech-
niques.

Input vectors are represented by an 8-entry array. First six
entries are used to represent 3 axial segments of both fresh fuel
batches. Entry number seven is used to specify a fuel loading
pattern. Finally, the last entry is used to specify a set of control
rod patterns throughout of the cycle. For all entries, integer
numbers are used to specify a fuel lattice or a fuel reload or
control rod patters according to the list. An example of input
vector is shown in Fig. 2.

Fig. 2. An example of input vector or core reactor configuration. The
number of alternatives available for each entry is also shown. For
example, 56 alternatives are available for entry 7.

Each input vector is unique and defines a particular core re-
actor behavior. According to the size of lists used in this work,
the universe of possible solutions to this problem is:

33×33×17×23×17×10×56×19 ≈ 7.7×1010 .

Output vector:

In order to construct the output vector we proceed as fol-
lows. An input vector is introduced into SIMULATE-3 in or-
der to do several runs and to obtain thermal limits (MFLCPR,
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MFLPD and MAPRAT), keff throughout of the cycle and cold
shutdown margin at the beginning of the cycle. These core pa-
rameters are satisfied if they fulfill the following constraints:

1. limiting fractions to Linear Heat Generation Rate (MFLPD)
<0.93

2. limiting fractions to Critical Power Ratio (MFLCPR) <
0.93

3. limiting fraction to Average Planar Linear Heat Generation
Rate (MAPRAT) < 0.93

4. keff− target keff <400 pcm (1 pcm = 10−5)

5. cold shutdown margin >0.01.

Some reactor core configurations may fulfill all or some of
the safety parameters. For the purposes of this work, if is
not fulfilled in only one burnup step, then it is considered like
not globally fulfilled. The same is applied for thermal limits.
Then, the number of safety parameters fulfilled can be deter-
mined for each core reactor configuration (input vector). The
value in the output vector is calculated as a function of the
number of core parameters fulfilled (CPF):

Output Value = e−(1−
CPF
5 ). (3)

When CPF is equal to zero, Output Value is e−1. When CPF
is 5, Output Value is e0 = 1.

The MLP will predict the Output Value, and then, we can
use such prediction to calculate the number of core parameters
fulfilled.

The neural network has three layers: an input layer with 8
neurons, a hidden layer with 4 neurons and the output layer
with only one neuron. The number of neurons in hidden layers
was determined by analyzing the neural network behavior for
sizes: 3, 4, 5 and 6 neurons. The best results were obtained for
4 neurons, so that is the value kept for the rest of the paper.

IV. EXPERIMENTS AND RESULTS

The 2680 samples in the dataset were divided in two subsets:
training set and test set. Training set has 70% of all samples
and test set has the rest 30%. Both subsets were randomly
created from the original one. MLP was trained with the back-
propagation algorithm using the Generalized Delta Rule for
weights updating. The program BackProp [13] was used to
train the MLP. Figs. 3 and 4 show the CPF values for train-
ing and test sets, respectively. As the MLP predicts the Output
Value, the corresponding CPF is calculated using the inverse
function of Eq. (3). Please note that CPF values calculated
from MLP predictions are continuous values, while CPF val-
ues calculated from SIMULATE-3 are discrete values. In case
of perfect learning, a 45◦ line should be observed in both fig-
ures. The results show that MLP is able to roughly distin-
guish between very bad or very good configurations (those
having low or high CPF values). In other words, MLP al-
most never classified a very good configuration (according to
SIMULATE-3) like a very bad configuration.

Fig. 3. MLP results for training set.

To further analyze the results, we will consider the follow-
ing questions: how many core configurations are recognized
as good configurations by MLP but SIMULATE-3 says they
are bad configurations? And, in turn, how many good config-
urations (according to SIMULATE-3) would be discarded by
MLP?

If we take a threshold value like 4.5 in the MLP’s predicted
Output Value, we can consider as “good” configurations those
that are above the threshold and as “bad” those that are below.
Truly good configurations are those with CPF = 5 according
to SIMULATE-3.

Fig. 4. MLP results for test set.

Now, taking the problem as a binary classification one, Ta-
ble 1 shows the so called Confusion Matrix for training and
test sets. This matrix indicates the amount of True Positives
(TP, good core configurations according to SIMULATE-3 and
MLP), True Negatives (TN, bad core configurations according
to SIMULATE-3 and MLP), False Negatives (FN, good core
configurations according to SIMULATE-3, but MLP classifies
them as bad ones) and False Positives (FP, bad core configura-
tions according to SIMULATE-3, but MLP classifies them like
good ones) obtained.

MLP learnt to classify core configurations with acceptable
confidence. As shown in Table 1, the number of False Nega-
tives is high and it means that MLP could discard an important
number of good core configurations. On the other hand, a low
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TABLE 1. Confusion matrix for good core configurations
Cycle Training Set Test Set

Good Core Configurations Bad Core Configurations Good Core Configurations Bad Core Configurations
according to SIMULATE-3 according to SIMULATE-3 according to SIMULATE-3 according to SIMULATE-3

Good Core Configurations
according to MLP

53 (TP) 12 (FP) 17 9

Bad Core Configurations
according to MLPP

32 (FN) 1762 (TN) 8 787 (TN)

number of False Positive means that a few bad core configura-
tions are considered as good core configurations.

Two additional statistical measures of the performance of
a binary classification test can be calculated from the confu-
sion matrix, namely sensitivity and specificity. Their defini-
tions are:

Specificity =
TN

TN + FP
(4)

Sensitivity =
TP

TP + FN
(5)

Sensitivity (also called recall rate in some fields) measures
the proportion of actual positives which are correctly identi-
fied as such. Specificity measures the proportion of negatives
which are correctly identified. A perfect predictor would be
described as having 100% sensitivity and 100% specificity. In
our case, the results are as follows:

TABLE 2. Sensitivity and Specificity of the binary classification
based on the NN

Sensitivity (%) Specificity (%)
Training set 62.35 99.32
Test set 68.00 98.88

In other words, the MLP is excellent for distinguishing bad
configurations but not so good at detecting the good ones.
However, we should recall that our aim is to explore the whole
universe of solutions and, in order to do this we should avoid
the full evaluation (with SIMULATE-3) of bad or not promis-
ing configurations. This process is described in the next sec-
tion.

V. MLP USED TO FIND GOOD CORE CONFIGURATIONS

The trained MLP was used as a filter in the process of ex-
haustive enumeration of possible configurations. Given a con-
figuration, we evaluate it with the MLP and if the predicted
output value is greater than certain threshold, then the config-
uration is considered as potentially good and is archived for a
later evaluation with SIMULATE-3.

Table 3 shows, for a given threshold value, the num-
ber of core configurations that were considered potentially
good, how many of them were effectively good (according to
SIMULATE-3), and the relation between both values.

Using a threshold value of 4.5 gave around 580 000 core
configurations, being less than 1% of them, effectively good.
Using a higher threshold effectively reduced the configurations
that passed the filter and increased the percentage of effectively
good configurations.

TABLE 3. Results of the exhaustive enumeration process. The total
number of core configurations was 7.7× 1010

Threshold Core configurations Core configuration (B/A)×100 %
Value with Output Value with CPF = 5

greater than according to
the threshold (A) SIMULATE-3 (B)

4.95 587570 1141 0.19
4.97 33279 366 1.10
4.98 930 48 5.16

VI. CORE CONFIGURATIONS ANALYSIS

In this section we will analyze the configurations obtained
after the enumeration process. The study was made for an
equilibrium BWR cycle of 18 months, with a cycle length of
10 896 MWD/T at full power conditions. For this cycle expo-
sure the target keff is set to 0.9978.

The fuel reload has two fresh fuel bundle batches. The first
one (Batch A) has an average uranium enrichment of 3.66%,
10 gadolinia rods and a batch size of 60 fuel bundles. The sec-
ond batch (Batch B) has the same average uranium enrichment
and 8 gadolinia rods and a batch size of 52 fuel bundles. An
uranium requirement (UR) for this fuel reload can be defined
in the following way:

UR = 60× UFB-A + 52× UFB-B (6)

UFB-A is the average uranium enrichment for fuel Batch A;
UFB-B is the average uranium enrichment for fuel Batch B
The baseline for the comparison is a reference core config-

uration with UR= 409.92% (applying Eq. (6) and keff−EOC =
0.9978. Core configurations with lower UR value means they
save uranium with respect to the reference one.

From the results shown in Table 3, we have available 1141
core configurations with CPF = 5. From this set, we will con-
sider only 165 configurations having a keff−EOC greater than
the reference one.

Figure 5 shows a scatter plot where each point represents a
core configuration. The X axis is the uranium saving (accord-
ing to Eq. (6) and the reference UR = 409.92%) , while the Y
axis indicates the difference against the keff reference value.
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TABLE 4. Hamming distances between the reference configuration and the selected ones
Entry 1 2 3 4 5 6 7 8
Configs 22 158 3 5 58 0 57 0
% (over 165) 13.33 95.76 1.82 3.03 35.15 0.00 34.55 0.00

Fig. 5. (Color online) Core configurations performance. Solid circles
means good core configurations, solid squares means core configura-
tion with economical advantages with respect to the reference one.

It is clear from the plot that there are better configurations
than the reference one, both improving keff and uranium sav-
ings. Core configurations above the solid line and marked with
solid squares are those that decrease the uranium enrichment of
one of the fresh fuel batches without loss of energy production.
These core configurations could have economical advantages
with respect to the reference one, both by uranium savings and
electrical energy sales. Core configurations under the line (in
solid circles) are good core configurations without economical
advantages with respect to the reference one.

The core configurations analysis can also be done from other
points of view:

In first place, we measured the Hamming distance [14] be-
tween the reference core configuration and the selected ones.
We obtained 35 configurations with one position changed; 122
with two positions changed and 8 configurations with three
changes.

Then, in order to analyze where those changes happened,
i.e. what are the necessary changes in the reference configura-
tion to obtain a better solution, we counted for every entry the
number of configurations with a different value than that of the
reference configuration (we must remember that the reference
configurations is [1,1,1,1,1,1,1,1]). The maximum value for
an entry is 165 stating that all the configurations under analy-
sis have a different value than the reference one. The results
are shown in Table 4.

It is clear that the entries with greater variability are 2, 5 and
7; there were no configurations with other alternatives than the
reference one for entries 6 and 8. In Table 4, it is clear that
the reference fuel lattice number two of both fuel batches can
be improved. Almost all good core configurations have dif-
ferent fuel lattices in both batches. Also, both fuel lattices are

responsible of the uranium savings. More energy production is
due to use of another fuel reload against of the reference one.

VII. CONCLUSION

From this work several comments can be made:

• It was possible to train a MLP able to catalog good core
configurations. A core configuration is a combination of
fuel lattices, control rod patterns throughout of the cycle
and a fuel reload.

• The MLP training required around one hour to learn the
desired behavior in an AMD processor at 2.1GHz and
a RAM of 1.5Gb. This small time interval converts the
trained MLP as an excellent tool to be coupled with an
optimization system to find the best core configuration.
The trained MLP could be used like a “bad configura-
tion filter” to avoid running a time expensive 3D core
simulator.

• The utility and the quality of the trained MLP was
demonstrate by an analysis of results in both test and
training sets and their performance when it was coupled
with an exhaustive searching algorithm.

• A balance between the required time to evaluate core
configurations and the analyzed solution space size can
be made by filter threshold adjusting. Lower threshold
values are able to help the coupled system to explore
more solutions in the optimization process. High thresh-
old values reduce the required CPU time to find a good
core configuration.

• This coupled system found several good core configu-
rations with any of these advantages (or both): they
overcome the energy requirements with the same ura-
nium enrichment, like the reference case or they reach
the energy requirements for decreasing the uranium en-
richment. Several core configurations satisfy both sce-
narios.

• Table 4 tells us about the performance of optimization
designs. We can say that, we are able to design fuel
reloads, trying the problem like an independent one,
with an acceptable confidence. Similar ideas can be said
for fuel lattices design. On the other hand, control rod
patterns designs have poor performances when they are
optimized like an independent problem of the rest of the
integral optimization one.
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