
NUCLEAR SCIENCE AND TECHNIQUES 25, 010501 (2014)

Research on GPU-accelerated algorithm in 3D finite difference neutron diffusion calculation method∗

XU Qi (徐琪),1, † YU Gang-Lin (余纲林),1 WANG Kan (王侃),1 and SUN Jia-Long (孙嘉龙)1

1Department of Engineering Physics, Tsinghua University, Beijing 100084, China
(Received March 14, 2013; accepted in revised form September 20, 2013; published online February 20, 2014)

In this paper, the adaptability of the neutron diffusion numerical algorithm on GPUs was studied, and a GPU-
accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. The IAEA
3D PWR benchmark problem was calculated in the numerical test. The results demonstrate both high efficiency
and adequate accuracy of the GPU implementation for neutron diffusion equation.

Keywords: Neutron diffusion, Finite difference, Graphics Processing Unit (GPU), CUDA, Acceleration

DOI: 10.13538/j.1001-8042/nst.25.010501

I. INTRODUCTION

In the field of reactor physics, numerical solutions of 3-
dimentional neutron diffusion equation are always required.
Compared with the coarse mesh nodal techniques, the finite
difference method is considered simpler and more precise,
however, it costs unendurable computer time when analyzing
a full-size reactor core.

Since 2006, NVIDIA’s GPUs (Graphics Processing Units)
has provided us with tremendous computational horsepower
because of the release of CUDA [1]. In the field of nuclear
reactor physics, the importance of the GPU+CPU heteroge-
neous platform has been growing gradually. Prayudhatama et
al. [2] implemented a 1-D finite difference diffusion code on
GPUs in 2010, and obtained up to 70× speedup compared to
a corresponding CPU code. In 2011, Kodama et al. [3] ported
the code SCOPE2 to GPUs, they got about 3 times speedup.
In the same year, Gong et al. [4] exploited the parallelism of
GPUs for the Sn code Sweep3D, which was speeded up by
about 2 to 8 times.

In this work, a GPU-accelerated multi-group 3D neutron
diffusion code based on finite difference method was imple-
mented and optimized. The IAEA 3D PWR benchmark prob-
lem [5] was utilized to prove the high computational efficiency
and accuracy of the GPU version code. The result in this work
shows a bright future of GPU applications in nuclear reactor
analysis.

II. NEUTRON DIFFUSION EQUATION

According to the neutron diffusion theory, we have the
multi-group neutron diffusion equation [6] as below,

−∇·Dg∇ϕg +Σg
t (r)ϕg =

G∑
g′=1

Σg′g
s ϕg′ +

χg

keff

G∑
g′=1

νΣg′

f ϕg′ ,

(1)
where g is the energy group number, ranging from 1 to G, keff
is the effective multiplication factor, and ϕg is the gth neutron

∗ Supported by the 973 Program (No.2007CB209800) and National Natural
Science Foundation of China (No.11105080)
† Corresponding author, q-xu09@mails.tsinghua.edu.cn

flux. We solve this equation by the source iteration methodol-
ogy [6], which includes inner and outer iterations. The inner
iteration computes a group of linear algebra equations in the
form of AX = B given the neutron scattering source and fis-
sion source. In the outer iteration, we use the neutron flux to
update the neutron source and get ready for a next inner itera-
tion.

In this work, we focus on accelerating the inner iteration.
Suppose the neutron source on the right hand of Eq. (1) is
known, then after discretization on XYZ grid, we can get
Eq. (2), which is a linear equation with a 7 diagonal positive
definite matrix as the coefficient.

ai,j,kϕi−1,j,k + bi,j,kϕi,j−1,k + ci,j,kϕi,j,k−1 + di,j,kϕi,j,k

+ ei,j,kϕi+1,j,k + fi,j,kϕi,j+1,k + hi,j,kϕi,j,k+1

= si,j,k, 1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ K.
(2)

Eq. (2) is a large-scale sparse matrix problem for full-size
reactor analysis. In the perspective of numerical mathemat-
ics, Jacobi iteration is inefficient, thus, arithmetic techniques,
such as CG, SOR, LSOR, ADI (Alternating Direction Implicit
method), are needed for efficient calculation.

III. GPU IMPLEMENTATION DETAILS

In order to test the computational capacity of GPUs, we do
not resort to any mathematical skill; instead, the Jacobi itera-
tion method is adopted for the inner iteration. The inner itera-
tion is ported to a GTX TITAN GPU. In the inner iteration, the
neutron flux is estimated according to the neutron source cal-
culated with the neutron flux of the last source iteration. The
outer iteration is still remained on CPUs to calculate the neu-
tron effective multiplication factor according to the neutron fis-
sion source from GPUs. After an outer iteration, the effective
multiplication factor is transferred from the CPU memory to
the GPU memory to get the neutron source for the next source
iteration. Fig. 1 shows the tasks distribution and data transfer
between GPUs and CPUs during one source iteration.

010501-1

http://dx.doi.org/10.13538/j.1001-8042/nst.25.010501
mailto: q-xu09@mails.tsinghua.edu.cn

XU Qi et al. Nucl. Sci. Tech. 25, 010501 (2014)

 !""!#$%"#&'()%

*%+,&-

.)++

 !"!#

"$!%&'($)*+

 !)!,-.,!"(#/(''

 !)0%1($2(%-(#"(&"3
4'#5(&3
'4%4&6

4'#%03
-0%"4%.(

7*+

 ! 7(%($!"(#'4&&40%#
&0.$-(

 ! 80,1(#%(."$0%#
',.9

 ! 7(%($!"(#%(."$0%#
&0.$-(

/!
0
)

Fig. 1. Tasks distribution and data transfer between GPUs and CPUs.

A. Solving neutron flux

The neutron flux is solved via Jacobi inner iteration on
GPUs. Because of the natural parallelism of the Jacobi iter-
ation, it is of high possibility to implement this algorithm on
GPUs with exciting speedups.

According to CUDA, GPUs have two levels of parallelism,
the first level is called grids of thread blocks, while the second
level is blocks of threads. One thread block is designed to be
mapped to an SM (Streaming Multiprocessor) on GPU chips,
and one thread to be mapped to an SP (Streaming Processor) in
an SM. In Jacobi iteration, the main part of computing tasks are
production and addition operations at each flux point, which is
shown by Eq. (2). To speed up such kind of iterations, the op-
erations at each flux point (i, j, k) should be allocated to a spe-
cific GPU thread so that the computation tasks can be spread
among the SPs on GPUs. Fig. 2 demonstrates the mapping re-
lationships between flux points and threads. As can be seen in
Fig. 2, one flux point is mapped to one GPU thread, and each
thread is responsible to update the flux at that point.

For a large-scale 3D reactor model, there will be millions or
even tens of millions of flux points needed to be updated using
the surrounding old flux, however, the hardware resources of
a GPU chip is limited to create as many threads as the flux
points. To solve this problem, we update the neutron flux layer
by layer as is illustrated in Fig. 2. After that, there will be
enough computing resources for a GPU to accelerate the inner
iteration procedure for each layer of flux points.

B. Generating sources and data movements

When the neutron flux is solved after inner iterations, the
fission source and the neutron source can be determined by the
following equaptions:

Sfission =

G∑
g′=1

νΣg′

f ϕg′ , (3)

Sneutro,g =
χg

keff
Sfission +

G∑
g′=1

Σg′g
s ϕg′ , (4)

where, Sfission stands for the fission source and Sneutron,g stands
for the neutron source of energy group g, both of which are cal-
culated by the neutron flux newly updated. In order to reduce
data exchange between the CPU and GPU memories, these two
sources are obtained on GPUs in parallel.

As shown in Fig. 1, there are three data movements during
one source iteration. The first data transfer happens after fis-
sion source was created, which moves fission source from de-
vice memory to host memory to calculate the effective multi-
plication factor keff by accumulating the fission source of each
flux point. The second data movement is for comparison be-
tween old and new neutron flux, during which the new neutron
flux is transferred from device to host. The third one transfers
keff, a double type variable, back to device memory to get the
neutron source.

C. Data storage

For the fine grid finite difference method, large number of
flux points lead to large memory space needs. Suppose there

010501-2

RESEARCH ON GPU-ACCELERATED . . . Nucl. Sci. Tech. 25, 010501 (2014)

 !"#$%&'()#
*+,$!&-,($./$/!"#$

0.)+'1
2!.341$./$'5(,&61

7&00)+8$/!"#$

0.)+'1$'.$'5(,&61

Fig. 2. Mapping relationships between flux points and threads.

are Ng energy groups, and Nx, Ny , Nz flux points in the X,
Y, Z direction respectively, then the memory space to store the
eight coefficients (including the neutron source Si,j,k) would
be 4(bytes)×Ng×Nx×Ny×Nz×8 bytes, and the memory
for the neutron flux would be 4(bytes)×Ng ×Nx×Ny ×Nz

bytes. When analyzing 3D full size reactors using GPUs, all
the above data should be allocated to GPU memory, which is
of limited volume. For GTX TITAN, the device memory is up
to 6 GB under 64 bit operating systems.

Under CUDA, a programmer is allowed to manage 7 dif-
ferent kinds of memory space, among which only the global
memory and the texture memory are able to be utilized to store
the coefficient data and the flux data. Because texture memory
has a texture cache and higher bandwidth than global memory,
it is advantageous to access data frequently from it. The only
limitation of texture memory is that it is read-only. Thus, the
coefficient data can be filled into texture memory, and the flux
data be allocated to global memory.

IV. PERFORMANCE TEST

In this section, we demonstrate the accuracy and efficiency
of the GPU accelerated code. Besides, we also discuss a way
of performance improvement by overclocking GPU proces-
sors.

A. Experiment platform and benchmark problem

The accuracy of the GPU version diffusion code is tested
by comparing the neutron flux computed by CITATION [7].
In order to prove the efficiency of the GPU code, we mea-
sure the performance of three diffusion codes listed in Table 1.
3DFD-CPU is a serial CPU version code which uses the Jacobi
iteration method for inner iterations. 3DFD-GPU is obtained
by accelerating the inner iteration part of 3DFD-CPU utiliz-
ing GPUs. HYPRE-8CORE [8] is a parallel diffusion code
running on an 8-core CPU. The computing hardwares of these
codes are also shown in Table 1.

The IAEA PWR benchmark problem, shown in Fig. 3,
is used for the numerical experiment. This is an impor-
tant benchmark problem widely used to test the performance

TABLE 1. Experiment platform
Code Computing platform
3DFD-CPU CPU:Intel Quad Q9300 @ 2.50GHz
3DFD-GPU GPU: NVIDIA Geforce GTX TITAN
HYPRE-8CORE CPU:Intel Xeon E5520 @ 2.26GHz

of the neutron deterministic codes. The core is composed
of 177 fuel assemblies, 9 of which are fully rodded and 4
of which are partially rodded. There are 64 reflector as-
semblies surrounding the core. The size of the assemblies
is 20 cm× 20 cm× 340 cm, while the size of 1/4 core is
170 cm× 170 cm× 380 cm.

Fig. 3. Horizontal section of the core.

010501-3

XU Qi et al. Nucl. Sci. Tech. 25, 010501 (2014)

Fig. 4. Power distribution comparison of 3DFD-GPU and CITATION
(grid size =2 cm).

B. Accuracy of the GPU code

To prove the accuracy of GPU computation, we compare the
power distribution of 3DFD-CPU with that of CITATION. CI-
TATION, developed by ORNL, is an industrial class code for
solving the neutron diffusion equation. The comparison results
are shown in Fig. 4. The convergence criterion is set so that the
simulation comes to an end when the effective multiplication
factor relative error is less than 1.0 × 10−6 and the maximum
point flux relative error is less than 1.0×10−5. The computing
grid size used in Fig. 4 is 2 cm, there are 1 372 750 spatial flux
points.

In Fig. 4, the relative error stands for the difference of the
code result from the benchmark result. The power distribution
of the GPU version code is close to that of CITATION. The
accuracy comparison tells us that there is no need to worry
about the accuracy and reliability of GPUs.

C. Efficiency of the GPU code

We use the codes listed in Table 1 to testify the computing
power of GPUs. Firstly, 3DFD-GPU is compared with the 8-
core CPU parallelized code HYPRE-8CORE, and then a com-
parison of computing time between 3DFD-GPU and 3DFD-
CPU is made.

According to Ref. [8], the author utilized the MPI-based par-
allelized linear algebra library HYPRE [9] to accelerate the
diffusion code. Here we call the corresponding code in Ref. [8]
as HYPRE-8CORE. HYPRE is a library developed by LLNL
for solving large sparse linear systems of equations on mas-
sively parallel computers. On an 8-core tower server, the inner
iteration part of the diffusion code is accelerated by the paral-
lelized Conjugate Gradient algorithm. During simulation, the
computing grid size is set to be 2.5 cm, and the convergence
standard is that Keff relative error converges to 1.0× 10−5 and
the maximum point flux relative error to 1.0×10−4. The com-
putation speed comparison between 3DFD-GPU and HYPRE-
8CORE is shown in Table 2.

TABLE 2. Efficiency comparison of 3DFD-GPU and HYPRE-
8CORE
Code Computing time (s) Speedup
HYPRE-8CORE 23.7 3.2
3DFD-GPU 7.5

In Table 2, although the HYPRE-8CORE is accelerated by
an 8-core server, 3DFD-GPU performs better.

The performance comparison of 3DFD-GPU and 3DFD-
CPU is shown in Fig. 5. We use six kinds of grid sizes,
from 5 cm× 5 cm× 5 cm to 1 cm× 1 cm× 1 cm, to demon-
strate the acceleration characteristic of GPUs for Jacobi iter-
ation. Table 3 lists the grid sizes and the corresponding grid
numbers. The convergence criterion is that Keff relative error
converges to 1.0 × 10−6 and the maximum point flux relative
error to 1.0× 10−5.

24.3

127.4

391.1

1607.5

7849.8

19557

2.2

4.5
7.4

18.6

176.5

494.5

87856 296514 702848 1372750 5622784 10982000
1

10

100

1000

10000
R

un
ti

m
e

(s
ec

)

Grid number

 3DFD-CPU
 3DFD-GPU

10

20

30

40

50

60

70

80

90

 Speedup

Sp
ee

du
p

Fig. 5. (Color online) Performance comparison between 3DFD-GPU
and 3DFD-CPU.

TABLE 3. Grid sizes and spatial grid numbers
Grid Size (cm) Grid Number
5 87856
10/3 296514
2.5 702848
2 1372750
1.25 5622784
1 10982000

Figure 5 shows the amazing accelerating power of GPUs
compared with CPUs, especially when the grid size is set to
2 cm, a speedup factor of 86 was obtained. This phenomenon
is caused by latency hiding, when the problem scales up and
the amount of data increases, all cores on GPU are working at
full capacity, then data transfer from the GPU memory by part
of thread blocks can be operated while other blocks are exe-
cuting the computational task. However, as can be seen from
Fig. 5, it should be noticed that oversized data amount may
decrease the speedups, because the communication overhead
between the host and the device increases and the sequential
part of the code may play an increasingly important role in the
whole process.

010501-4

RESEARCH ON GPU-ACCELERATED . . . Nucl. Sci. Tech. 25, 010501 (2014)

11.0

28.3

52.9

86.4

44.5
39.5

11.6

29.6

55.1

97.4

56.2
49.0

87856 296514 702848 1372750 5622784 10982000
0

5

10

15

20

Grid number

 Time saved

0

20

40

60

80

100

Ti
m

e
sa

ve
d

(%
)

 low GPU clock

 high GPU clock

Sp
ee

du
p

Fig. 6. (Color online) Performance improvement of overclocked
GPUs.

D. Performance improvement by overclocking

In order to get the same performance with lower energy con-
sumption, NVIDIA decreased the base clock of GPUs of Ke-
pler series, while increased the number of streaming proces-
sors in streaming multiprocessors (SMX). The base core clock
of GTX TITAN is 837 MHz, which is lower than that of GTX
580 (Fermi architecture, 1544 MHz). We use the overclocking
utility NVIDIA Inspector to set the core clock to be 1166 MHz
and the memory clock to be 3334 MHz. Fig. 6 shows the per-

formance improvement after overclocking. In Fig. 6, the run-
time and the speedup factor of 3DFD-GPU before and after
overclocking are compared with each other, where the speedup
factor is relative to the runtime of 3DFD-CPU.

Through overclocking, the GPU acceleration effect is im-
proved. The performance improvement depends on the scale
of the analyzed problem, that is to say, more obvious perfor-
mance enhancement can be obtained when the grid number
increases.

V. CONCLUSION

In this work, a GPU-accelerated multi-group 3D neutron
diffusion code based on finite difference method was devel-
oped to speed up the finite difference methodology and exam-
ine the performance of GPUs. The IAEA 3D PWR bench-
mark problem is used as the problem model in the numer-
ical experiment. By comparing the power distribution ob-
tained from 3DFD-GPU and CITATION, we prove the accu-
racy of GPU computing. The performance advantage of GPUs
is also demonstrated by comparing the runtime of 3DFD-GPU,
3DFD-CPU and HYPRE-8CORE.

As to the future work, mathematical accelerating tech-
niques, such as the Conjugate Gradient method and the Cheby-
shev extrapolation method, will be adopted to reduce the run-
time of the GPU-based finite difference method to the same
order of magnitude as the coarse mesh nodal methodology.

[1] NVIDIA Corporation. CUDA C Programming Guide. 2012, 3–4
and 71–75.

[2] Prayudhatama D, Waris A, Kurniasih N, et al. Proceedings of AIP
Conference Proceedings, 2010, 1244: 121–126.

[3] Kodama Y, Tatsumi M, Ohoka Y. Study on GPU Computing for
SCOPE2 with CUDA. Proceedings of International Conference
on Mathematics and Computational Methods Applied to Nuclear
Science and Engineering (M&C2011), Brazil, 2001.

[4] Gong C, Liu J, Chi L, et al. GPU Accelerated Simulations
of 3D Deterministic Particle Transport Using Discrete Ordi-
nates Method. Journal of Computational Physics, 2011, 230(15):
6010–6022.

[5] Argonne National Laboratory. Benchmark Problem Book. ANL-

7416, Suppl.2, 1977, 277–280.
[6] Duderstadt J J and Hamilton L J, Nuclear Reactor Analysis. New

York (USA): John Wiley & Sons, Inc.,1976, 285–314.
[7] Fowler T B, Vondy D R, Cunningham G W. Nuclear Reactor

Core Analysis Code CITATION, ORNL-TM-2496, Supplement
2. ORNL, 1972, 104–140.

[8] Wu W B, Li Q, Wang K. Parallel Solution of 3D Neutron Dif-
fusion Equation Based on HYPRE. Science and Technology on
Reactor System Design Technology Laboratory Annual Report.
Chengdu, China, 2010, 35–40 (in Chinese).

[9] Lawrence Livermore National Laboratory. HYPRE User’s Man-
ual (Version 2.7.0b). 2011, 1–6.

010501-5

	Research on GPU-accelerated algorithm in 3D finite difference neutron diffusion calculation method
	Abstract
	Introduction
	NEUTRON DIFFUSION EQUATION
	GPU IMPLEMENTATION DETAILS
	Solving neutron flux
	Generating sources and data movements
	Data storage

	PERFORMANCE TEST
	Experiment platform and benchmark problem
	Accuracy of the GPU code
	Efficiency of the GPU code
	Performance improvement by overclocking

	conclusion
	References

