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Study of recursive model for pole-zero cancellation circuit∗
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The output of charge sensitive amplifier (CSA) is a negative exponential signal with long decay time which
will result in undershoot after C-R differentiator. Pole-zero cancellation (PZC) circuit is often applied to elim-
inate undershoot in many radiation detectors. However, it is difficult to use a zero created by PZC circuit to
cancel a pole in CSA output signal accurately because of the influences of electronic components inherent error
and environmental factors. A novel recursive model for PZC circuit is presented based on Kirchhoff’s Current
Law (KCL) in this paper. The model is established by numerical differentiation algorithm between the input and
the output signal. Some simulation experiments for a negative exponential signal are carried out using Visual
Basic for Application (VBA) program and a real x-ray signal is also tested. Simulated results show that the
recursive model can reduce the time constant of input signal and eliminate undershoot.
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I. INTRODUCTION

The detector signal needs to be amplified before digitized
in radiation detection technique. There are two types of am-
plifiers, i.e., preamplifier and amplifier. The preamplifier is
located as close as possible to the detector. The main function
of a preamplifier is to maximize the signal-to-noise ratio and
to provide a low impedance source for the amplifier [1]. It also
should provide a high impedance load for the detector. The
amplifier is applied to amplify and shape the output signal of
preamplifier.

CSA is extensively used in X-ray fluorescence analyzer and
well logging system as a preamplifier with the advantages of
low noise and efficient performance at high counting rates. The
CSA output is a two-component signal, which consists of a
rapidly rising edge and a followed slow trailing edge that de-
cay back to baseline with the long time constant of the CSA,
instead of an ideal step signal. CSA output pulses can pile up
on the tails of previous pulses and cause baseline drifting, char-
acteristic peak drifting and poor resolution due to high count-
ing rates. In a worse case, the pulse resulting from pile-up
pulse may block the amplifier of next stage. In multi-channel
analysis (MCA), PZC technique is used to reduce the width
of negative exponential signals [2, 3], which can decrease the
possibility of pulse pile-up, and keep good energy resolution
at high counting rates. A PZC circuit consisting of one capaci-
tor of 24pf and twenty PMOS transistors connected in parallel
was designed to reduce the effect of pile-up [4]. Pawel Grybos
proposed a continuous CSA feedback reset system with a novel
architecture for PZC circuit in high rates of input pulses condi-
tion [5–7]. This system reduced the influence of a DC voltage
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shift resulting from high rates of input pulses on CSA feedback
resistance and the PZC circuit. Seino et al. used an alternative
technique instead of pulsed bias voltage shutdown technique
to avoid degrading the energy resolution in high counting rates
condition without a PZC circuit [8]. However, it is difficult to
use a zero in the transfer function expressed in Laplace trans-
form to cancel a pole presented in CSA output signal accu-
rately by using PZC circuit because of the influences of elec-
tronic components inherent error and environmental factors. A
novel recursive model for PZC circuit is presented to eliminate
undershoot and reduce the width of CSA output signals in this
paper.

II. POLE-ZERO CANCELLATION CIRCUIT

Figure 1 shows the CSA analog circuit, which consists of a
feedback capacitance Cf, a feedback resistance Rf and a oper-
ational amplifier. A current signal generated in the detector is
integrated on Cf, and Rf is used for discharging Cf to avoid the
amplifier saturation when a series of charge pulses come to the
input of the CSA [9].

As G · Cf � Ci + Cf , where G is the amplifier open loop
gain, Ci is the input capacitor of CSA, the CSA input volt-
age signal can be given by Eq. (1), and Q represents the total
charge collected in the detector and is proportional to the en-
ergy of deposited into detector, τf is the time constant with
τf = Rf · Cf .

νi(t) =
Q

Cf
e−t/τf (1)

Rf has an intrinsic noise (Johnson noise) associated with
it. The noise can be minimized by selecting a higher Rf . For
the applications of extracting detector output signal (small sig-
nal) and minimizing the noise, the value of Rf is often chosen
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Fig. 1. Scheme of CSA.

in the M Ohm range. So the time constant τf is relatively
long [6]. The long time constant can induce to long lasting un-
dershoot after the C-R shaper causing overloading in the next
amplifier stage and make the amplifier working in non-linear
region losing the ability of amplification for small signals. It
can also cause pulse pile-up deteriorating the energy resolu-
tion [10].

PZC circuit can eliminate undershoot which results from
long time constant of CSA [11]. Fig. 2 illustrates a PZC cir-
cuit [12]. The input signal is defined as vi and the output signal
as vo. RPZ is the variable resistor, which can eliminate the un-
dershoot by adjusting properly.

Fig. 2. Scheme of PZC circuit.

Eq. (1) can be described as Eq. (2) according to Laplace
transform.

Vi(s) =
Q

Cf
· 1

s+ 1
τf

(2)

The transfer function of Fig. 2 can be represented as

H(s) =
s+ 1

τ1

s+ 1
τ2

, (3)

where τ1 = RPZ · C, τ2 = (R//RPZ) · C. For the Eq. (2)
and (3), the output signal in Fig. 2 can be expressed as

Vo(s) = Vi(s)H(s)

=
Q

Cf
· 1

s+ 1
τf

·
s+ 1

τ1

s+ 1
τ2

(4)

The cancellation requirement leads to the condition τ1 = τf .
Eq. (4) can be written as

Vo(s) =
Q

Cf
· 1

s+ 1
τ2

. (5)

The time domain output vo(t) can be obtained through the
inverse Laplace transform as

vo(t) =
Q

Cf
· e−t/τ2 (6)

So, the CSA output becomes a negative exponential signal
with shorter decay time (time constant is τ2) when τ1=τf .

III. NUMERICAL ANALYSIS AND SIMULATIONS

Laplace transform makes the signal convenient for analy-
sis. However, it is difficult for some complex signals to con-
vert from time domain to Laplace domain and it could lose
the time-domain characteristics by using Laplace transform.
A novel recursive model for PZC circuit is implemented based
on the analysis of digital C-R shaping method [13] and digital
Sallen-Key low-pass filter [14].

A. Numerical recursive root

According to KCL, which states that the sum of current into
a junction equals the sum of current out of the junction, the
voltage transmission in Fig. 2 can be described by the follow-
ing equations:

vi − vo
RPZ

+
d(vi − vo)

dt
· C =

vo
R
, (7)

dt

RPZ · C
· (vi − vo) + d(vi − vo) =

dt

R · C
· vo. (8)

Analog signal can be converted into discrete series with
small time interval by using high-speed ADC. A first-order nu-
merical differentiation method is used to solve Eq. (8). Letting
vi = x[n], vo = y[n], dt = ∆t, Eq. (8) can be rewritten as

∆t

RPZ · C
·(x[n] − y[n]) + [x[n] − x[n− 1] − (y[n] − y[n− 1])]

=
∆t

R · C
· y[n],

(9)
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where ∆t is the time interval from x[n − 1] to x[n] or the
sampling time period of the high-speed ADC, x[n] and y[n]
are the input and output data series, respectively. Letting k1 =
∆t/ (RPZ ·C), k2 = ∆t/ (R ·C), Eq. (9) can be simplified to

(1 + k1 + k2) · y[n]

= (1 + k1) · x[n] − x[n− 1] + y[n− 1].
(10)

Eq. (10) can be written as Eq. (11) based on mathematical
equivalence transformation.

{
y[n] = (1+k1)·x[n]−x[n−1]+y[n−1]

1+k1+k2
n > 1

y[n] = x[n] = 0 n 6 0
(11)

Eq. (11) is the numerical recursive root corresponding to
the PZC circuit in Fig. 2 and it is also the recursive model
for PZC circuit. The recursive PZC model processing of the
CSA output signal can be implemented by recursive-calling of
Eq. (11). Different type of output signals can be acquired at
different k1 and k2, the shaping parameters of the recursive
PZC model.

An accumulation depending on a standard negative expo-
nential signal is carried out to verify the model. Define vi =
A · e−t/τ , where A represents the amplitude of input signal, τ
is time constant. Taking vi into Eq. (7), a differential equation
can be described as

A

RPZ
· e−t/τ − 1

RPZ
· vo −

A · C
τ

· e−t/τ − dvo
dt

· C

=
vo
R

(12)

dvo
dt

+
RPZ +R

R ·RPZ · C
· vo =

A · (τ −RPZ · C)

τ ·RPZ·
· e−t/τ (13)

Let RPZ · C = τ by adjusting RPZ. Eq. (13) can be written
as Eq. (14).

dvo
dt

+
RPZ +R

R ·RPZ · C
vo = 0 (14)

Letting vo = y, y is defined as the output signal of PZC
circuit at a certain time, Eq. (14) can be converted into

y′ + b · y = 0, (15)

where b = (RPZ +R)/ (R ·RPZ ·C). Eq. (15) is a first-order
linear homogeneous equation, the root of which can be defined
as

y = C · e−bt (16)

where C is a constant. The output of PZC circuit in time do-
main can be obtained according to Eq. (16).

vo = C · e−bt (17)

From the equation above, it can draw a conclusion that the
output of recursive PZC model is a negative exponential sig-
nal without undershoot and the time constant is (R//RPZ) · C
while the input is a standard negative exponential signal. This
is equivalent to the conclusion drawn from Eq. (6). It is in-
dicated that the model deduced in time domain has the same
signal processing function as a real PZC circuit does. In order
to test this new model, some computer simulations are carried
out and a real x-ray signal test is also performed.

B. Computer simulations

A computer simulation platform is developed with VBA lan-
guage. The recursive PZC model and its input signal are imple-
mented through program code. The simulations include four
phases:

1. A standard negative exponential signal simulation. A
standard negative exponential signal can be obtained
with Eq. (18):

vi = A · e−t/τ , (18)

where A represents the amplitude of the standard nega-
tive exponential signal, τ is decay constant. Fig. 3 shows
the standard negative exponential signal withA = 2000,
τ = 200 which reflects the time constant is 10 µs as
∆t = 50 ns.
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Fig. 3. Simulations for a standard negative exponential signal.

2. Digital C-R shaping for a standard negative exponential
signal. A C-R shaping circuit is inserted in Fig. 4. The
numerical recursive root of the C-R shaping circuit can
be obtained based on the same analysis method in Sec-
tion III and its recursive model can be written as{

y[n] = x[n]−x[n−1]+y[n−1]
1+k n > 1,

y[n] = x[n] = 0 n 6 0,
(19)
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where k = ∆t/(R · C). Fig. 4 shows the input and out-
put signals, at shaping parameter k = 0.01, with ∆t =
50 ns. The input signal is the same as Fig. 3 showing.
Simulated results show that the standard negative expo-
nential signal exists undershoot after C-R differentiator.
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Fig. 4. (Color online) Simulations for a standard negative exponential
signal with C-R shaping.
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Fig. 5. (Color online) Simulations for a standard negative exponential
signal with the recursive PZC model.

3. Recursive model processing for negative exponential
signal. A standard negative exponential signal the same
as Fig. 3 showing is used to test the recursive PZC model
and an output signal with C-R shaping model presented
in Fig. 4 is used as a contrast. Fig. 5 shows the input
and output signals, at shaping parameters k1 = 0.005,
k2 = 0.05 according to PZC condition. Output 1 looks
like the output of real PZC circuit where RPZ = 10 kΩ,
R = 1 kΩ, C = 1 nf and ∆t = 50 ns. The simulated
results suggest that the recursive model for PZC circuit
can eliminate undershoot, which exhibits in C-R shap-
ing, and reduce the time constant of input signal.

4. Recursive model processing for nuclear signal. A two-

 

0 512 1024 1536 2048
0

500

1000

1500

2000

2500

        Output

(k
1
=0.001,k

2
=0.01)

Input

P
u

ls
e 

H
ei

gh
t/

m
V

Time/ns

Original Signal

Fig. 6. (Color online) Simulations for a two-component exponential
signal with the recursive PZC model.
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Fig. 7. (Color online) Real data with the recursive PZC model.

component exponential signal can be described as

νi = A · (e−t/τ1 − e−t/τ2), (20)

whereA represents the amplitude of the two-component
exponential signal, τ1 is the decay constant before CSA,
and τ2 is the decay constant of CSA. A two-component
exponential signal with A = −2000, τ1 = 10, τ2 =
1000, which implies that the time constant of CSA is
50 µs as ∆t = 50 ns, is simulated as an original signal. A
baseline is added to the original signal to simulate input
signal. k1 is set to 0.001 according to the cancellation
requirement.

As shown in Fig. 6, the difference of amplitude between
original signal and output signal is small and the width
of original signal is reduced without undershoot. A real
x-ray signal test is done to test the recursive model. In
this experiment, the input pulse was obtained from a
SDD X-ray detector (Amptek). This pulse signal was
sampled by a 10-bit ADC at 20 MHz sampling rate, af-
ter a CSA preamplifier and a C-R shaping circuit. The
digital output of the ADC was transmitted to the PC for
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implementation of the recursive model for PZC circuit.
The time constant of the input signal is 3.2 µs, thus the
value of k1 is set to 0.0156. The results of this model
for real data at different shaping parameters are given in
Fig. 7. It can be seen that the width of the real x-ray
signal is reduced and the undershoot is eliminated.

IV. CONCLUSION

In this paper, a numerical recursive solution of PZC circuit
is obtained through numerical analysis method in time domain
and the recursive model of the circuit is also established. The

accuracy of the model is verified theoretically on KCL. The
recursive model is tested on a computer simulation platform
by using a standard negative exponential signal as input. Fur-
thermore, a real x-ray signal is also processed by this recursive
model. Simulation and test results show that it is easier to
establish a recursive PZC model by using numerical analysis
method to overcome the deficiency of losing the time-domain
characteristics in Laplace domain. The recursive PZC model
supplies the contents of digital S-K filter [13] and enriches the
methods of nuclear signal analysis, it can be used in real-time
signal processing for preamplifier signal, as well as for the dig-
ital pulse shaping analysis, which is one of the key techniques
in digital nuclear instruments.
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