Available online at www.sciencedirect.com

NUCLEAR SCIENCE AND TECHNIQUES

Nuclear Science and Techniques 19 (2008) 302-307

Measurements of natural radionuclides in soil samples from Upper Egypt

Shaban Ramadan Mohamed HARB¹ Khaled SALAHEL DIN¹ Abd Elbaset ABBADY¹ Mohamed Abd Elleh ALI¹ Rolf MICHEL²

¹Physics Department, Faculty of Science, South Valley University, Qena 83523, Egypt

² Center for Radiation Protection and Radioecology, Hanover University (ZSR), D-30419 Hanover, Germany

Abstract This paper presents the results of natural radioactivity measured for the soil of Qena using gamma-ray spectrometry at ZSR, Hanover University, Germany. Soil samples of radioactive concentrations of ²³⁸U-series (²³⁴Th, ²¹⁴Pb, and ²¹⁴Bi), ²³²Th-series (²²⁸Ac, ²¹²Pb, and ²⁰⁸Tl) and ⁴⁰K were analyzed. Three objectives were set: (1) activity levels by surface soil sampling at 0~30 cm depth, (2) dose rates of gamma radiation, radium equivalent, index hazard, and effective dose, and (3) ambient dose rates.

Key words Soil, Environmental radioactivity, Gamma spectrometry, Radiation exposure, Ambient dose **CLC numbers** X125, TL817.⁺2

1 Introduction

The Qena governorate in Upper Egypt is best known as the location of some of Egypt's most famous Pharaonic temples. The governorate is located about 535~650 km south of Cairo on the upstream of the Nile River (Fig.1). Qena is bordered on the north by Sohag and on the south by the Aswan governorate. The Nile valley is at its narrowest in Egypt here and the arable land, a green strip only 1 or 4 km on each side of the river, is bordered by barren desert on both sides.

Potential terrestrial sources of naturally occurring elevated radiation levels have been identified in Egypt. Thus, efforts are currently being undertaken to create a natural radiation database, in the form of a radiation level map of natural radioactivity, to be used to assess the associated radiation risk to public. Ambient dose rates were determined with a FH 40 G-L System-Radiometer Instruments dosimeter in many sites in Upper Egypt.

Human beings are exposed to natural gamma radiation emitted by the primordial radionuclide ⁴⁰K

and the radionuclides of the different decay chains that is an omnipresence with ²³⁸U and ²³²Th in soi1 and rocks al1 the time. Humans and other organisms in the environment are exposed to radiation and radionuclides from natural sources, meanwhile people can be exposed to radiation while settling on contaminated soils.

Fig.1 Soil samples locations in Upper Egypt.

^{*} Corresponding author. *E-mail address:* s.harb@web.de Received date: 2008-07-02

2 Materials and methods

2.1 Soil samples collection and preparation

Soil samples were collected at ten sites (Fig.1). Each sample was taken to a depth of 0~30 cm at a chosen point, data from Global Positioning System (GPS) were used for tracking the data recorded. In order to obtain a representative sample, the collected soil was mixed together, sieved to remove stones and pebbles, and crushed to pass through a 2-mm mesh sieve to homogenize it, then, the soil samples were air-dried for several days, placed in an oven at 100°C for 72 h and weighed. Finally, a split of each prepared sample was packed in a 250-mL polypropylene bottle, which was sealed and left for at least 4 weeks before counting by gamma spectrometry in order to ensure that radioactive equilibrium was reached between ²²⁶Ra, ²²²Rn, and ²²²Rn progeny^[1].

2.2 Detectors and efficiency calibration

The Gamma spectrometry system, a p-type HPGe coaxial detector, shielded with 10 cm lead and 2 mm copper, was used for bulk counting of environmental samples. The detector is a vertical type, model GEM 50198-P(35% relative efficiency), with an energy resolution of 1.78 keV (FWHM) at E_{γ} = 1332 keV.

Detector efficiency calibration was carried out by using a mixing radionuclides gamma-ray reference standard QCY48(obtained from Physikalisch-Technische Bundesanstalt PTB, Germany) containing ten γ -emitters in the energy range 59.54 to 1836 keV (Fig.2). The same geometry was used for all the samples^[2].

3.5 3.0 2.5 0¹⁰⁹Cd 11³Sn 0⁹Cd 1.5 1.5 0 0 500 1000 1000 1500 2000 Energy / keV

Fig.2 Efficiency calibration for HPGe detector.

2.3 Calculations

2.3.1 Activity concentrations

Following the spectrum analysis, counting rates for each detected photopeak and activity per mass unit (radiological concentration) for each of the detected nuclides are calculated. The specific activity (in $Bq\cdot kg^{-1}$) is given by

$$A_{\text{specific}} = (N_{\text{s.n}}/t_{\text{s}} - N_{0,\text{n}}/t_0)/(I_{\gamma} \varepsilon m)$$
(1)

where $N_{s,n}$ is the net counts in a given peak area for a sample, $t_s=18\sim24$ h is the counting time for the sample, $N_{0,n}$ is the net counts in a given peak area for background, $t_0=72$ h is the counting time for background, ε is the detection efficiency, I_{γ} is the number of gamma photons per disintegration, and *m* is the mass in kg of the measured sample.

The ²³⁸U activity concentration was calculated from the mean value of gamma transitions obtained from the peaks of ²³⁴Th (63.28 and 92.37 keV), and the ²²⁶Ra activity concentration was calculated from the mean value of ²¹⁴Pb (295.22 and 351.93 keV) and ²¹⁴Bi (609.31 and 1120 keV).

Each tabulated value for the 232 Th series concentration was averaged from three measurements of the peaks of 212 Pb (238.63 keV), 228 Ac (209.25 keV, 338.32 keV, 911.2 keV and 968.97 keV) and 208 Tl (583.19 keV). The 1461 keV gamma of 40 K was used to determine the 40 K concentration in different samples.

The ISO standard^[3] is used to estimate the uncertainty of our measurement results such as efficiency and activity of radionuclides in soil samples. The total uncertainty value is composed of the random and systematic errors in all of the factors involved in producing the final nuclide concentration result.

2.3.2 Assessment of radiological hazards

2.3.2.1 Estimation of absorbed dose rate

The conversion factors^[4] were used to compute the absorbed dose rate in air per unit of specific activity concentration in soil for 40 K, 226 Ra and 232 Th as in Eq.(2). The conversion factor^[5] for photon equivalent dose rate in air kerma is 1.15 Sv·Gy⁻¹ in Eq.(3).

 $D(nGy \cdot h^{-1}) = 0.0417A_{\rm K} + 0.462A_{\rm Ra} + 0.604A_{\rm Th}$ (2)

 $D(nSv \cdot h^{-1}) = (0.0417A_{\rm K} + 0.462A_{\rm Ra} + 0.604A_{\rm Th}) \times 1.15$ (3)

where A_{Ra} , A_{Th} and A_{K} are the specific activities of ²²⁶Ra, ²³²Th and ⁴⁰K in Bq·kg⁻¹, respectively. The natural radioactivity of building materials is usually determined from ²²⁶Ra, ²³²Th and ⁴⁰K contents.

2.3.2.2 Radium equivalent activity

Radium equivalent activity is an index that has been introduced to represent the specific activities of ²²⁶Ra, ²³²Th and ⁴⁰K by a single quantity, which takes into account the radiation hazards associated with them. This first index can be calculated according to^[6]

$$Ra_{eq} = C_{Ra} + (10/7) C_{Th} + (10/130) C_K$$
(4)

where C_{Ra} , C_{Th} and C_{K} are the specific activities of ²²⁶Ra, ²³²Th and ⁴⁰K in Bq·kg⁻¹, respectively. **2.3.2.3** Representative level index

Another radiation hazard index called the representative level index ($I_{\gamma r}$) is defined as follows^[7]:

$$I_{\rm r} = (1/150) C_{\rm Ra} + (1/100) C_{\rm Th} + (1/1500) C_{\rm K}$$
 (5)

where C_{Ra} , C_{Th} and C_{K} are the specific activities of ²²⁶Ra, ²³²Th and ⁴⁰K in Bq·kg⁻¹, respectively.

2.3.2.4 Annual effective dose rates

To estimate the annual effective dose rates, the conversion coefficient from absorbed dose in air to effective dose (0.7 Sv·Gy⁻¹) and outdoor occupancy factor (0.2) proposed by UNSCEAR^[8] were used. The effective dose rate in unit of mSv·a⁻¹ was calculated by the following formula:

Effective dose rate $(mSv \cdot a^{-1}) =$

Dose rate $(nGy \cdot h^{-1}) \times 8760 h \times 0.2 \times 0.7 Sv \cdot Gy^{-1} \times 10^{-6}$ (6)

3 Results and discussions

3.1 Terrestrial radionuclides

The activity concentrations of the primordial radionuclides have been detected and measured in the ten locations across the region. ¹³⁷Cs was not detected in these samples, indicating that the radioactivity in the region is still due to natural radioactive elements. The range and average values of the activity concentration of the natural radionuclides in each site are presented in Tables 1 and 2.

²²⁶Ra 238U (234Th) Sample No Mean (214Pb, 214Bi) ²¹⁴Pb ²¹⁴Bi 1 5.5 ± 0.6 8.5 ± 1.5 8.3 ± 1.2 8.7 ± 1.0 2 47.3 ± 15 12.4 ± 1.5 13.0 ± 1.8 11.8 ± 1.0 3 32.5 ± 13 12.5 ± 1.1 13.0 ± 1.2 11.3 ± 1.0 46.4 ± 14 16.1 ± 1.5 17.0 ± 1.8 14.8 ± 1.0 4 5 46.2 ± 15 13.8 ± 1.5 13.0 ± 1.8 14.3 ± 1.0 34.3 ± 13 14.1 ± 1.5 13.0 ± 1.8 14.6 ± 1.0 6 7 47.9 ± 17 11.2 ± 1.6 11.2 ± 2.0 11.1 ± 1.0 8 28.6 ± 15 12.5 ± 1.5 12.9 ± 2.0 12.2 ± 1.0 9 20.0 ± 15 11.3 ± 1.5 10.1 ± 1.0 12.6 ± 2.0 24.4 ± 15 12.5 ± 1.5 12.3 ± 1.0 10 12.7 ± 2.0 33.3 ± 13.5 12.5 ± 1.5 12.9 ± 1.7 12.1 ± 1.3 Mean

 Table 1
 Activity concentration of ²³⁸U-series (in Bq·kg⁻¹) in soil samples

Sample No.	²²⁸ Ra(²²⁸ Ac)	²²⁸ Th				4012	
		Mean ²¹² Pb, ²⁰⁸ Tl	²¹² Pb	²⁰⁸ Tl		Γ Λ	
1	12 ± 2	10 ± 1	10 ± 1	8.1 ± 1	10.5 ± 1.3	148 ± 9	
2	10 ± 2	11 ± 1	11 ± 1	9.9 ± 1	10.3 ± 1.6	239 ± 14	
3	10 ± 1	10 ± 1	11 ± 1	9.1 ± 1	10.1 ± 1.4	189 ± 12	
4	14 ± 2	12 ± 1	12 ± 1	11 ± 1	12.7 ± 1.5	224 ± 13	
5	13 ± 2	12 ± 1	12 ± 1	11 ± 1	12.2 ± 1.7	249 ± 14	
6	13 ± 2	14 ± 1	14 ± 1	13 ± 1	13.7 ± 1.6	191 ± 12	
7	16 ± 3	16 ± 1	16 ± 1	16 ± 1	16.0 ± 2.2	291 ± 16	
8	14 ± 2	10 ± 1	10 ± 1	10 ± 1	12.4 ± 1.9	238 ± 14	
9	13 ± 2	12 ± 1	12 ± 1	12 ± 1	12.9 ± 1.9	237 ± 14	
10	14 ± 2	11 ± 1	11 ± 1	11 ± 1	13.0 ± 2.0	229 ± 14	
Mean	13 ± 2	11 ± 1	12 ± 1	11 ± 1	12.5 ± 1.7	223 ± 13	

 Table 2
 Activity concentration of ²³²Th-series and ⁴⁰K (in Bq·kg⁻¹) in soil samples

3.1.1 Uranium series

²³⁸U, ²²⁶Ra and other short-lived daughters were detected in all the soil samples. The ²³⁸U and ²²⁶Ra concentrations (Table 1), which were very low in all cases, are less than reported in different studies^[9,10].

3.1.2 Thorium series and ⁴⁰K

The activity concentrations of ²²⁸Ra, ²²⁸Th, ²³²Th and ⁴⁰K in soil are shown in Table 2. In general, the concentrations of ²²⁶Ra and ²³²Th in the soil are in most cases lower than the data reported by UNSCEAR^[11]. World average concentrations are 30 and 25 Bq·kg⁻¹ for ²²⁶Ra and ²³²Th, respectively. And the typical concentration ranges are 10~14 Bq·kg⁻¹ for ²²⁸Ra and 10~13 Bq·kg⁻¹ for ²³²Th. The concentrations of ⁴⁰K are in most cases lower than the world data of 370 Bq·kg^{-1[12]}.

3.2 Ambient dose rate

Ambient gamma dose rates were measured in air at 1.0 m above the ground surface every five minute using the FH 40 G-L System. The measured ambient dose rates due to gamma radiation from the naturally occurring radionuclides in soil in Qena and Aswan governorates are given in Table 3. The dose rate varies from 57 to 130 nSv·h⁻¹ with a mean value of 89 ± 18 nSv·h⁻¹ in the west site of river Nile. But the value in the east site is 79 ± 18 nSv·h⁻¹ excluding the 250 nSv·h⁻¹ measured at (32° 48' 56" E, 25° 06' 44" N), where phosphate production is the major industry^[13].

3.3 Gamma dose rate and hazard indexes

Table 4 shows the gamma ray activity concentrations of 238 U, 232 Th and 40 K in Bq·Kg⁻¹in ten positions. It shows mean activity levels of 226 Ra, 232 Th and 40 K measured in the soil from Qena. It can be seen that the 226 Ra activity ranges from 8.5 to 16.1 Bq·kg⁻¹, the 232 Th from 10.1 to 14.9 Bq·kg⁻¹ and the 40 K from 148 to 249 Bq·kg⁻¹. The 40 K activity is higher than 232 Th and 226 Ra in all the samples.

The radium equivalent activities of each material were estimated using Eq.(4). The mean value of radium equivalent activities of all soil samples is 47.62 ± 4.96 Bq·kg⁻¹.

Humans are exposed to different sources of radiation in the environment, but natural sources deliver the highest radiation dose that people normally receive. The average annual dose from natural sources is 2.4 mSv which is a reference level representing the range $1 \sim 10 \text{ mSv} \cdot a^{-1}$ and in extreme cases to 1 Sv or more^[8,14].

Site No.	West site of Nile River		Measured	Site	East site of Nile Riv	/er	Measured
	Longitude (E)	Latitude (N)	nSv·h ⁻¹	No.	Longitude (E)	Latitude (N)	nSv·h ⁻¹
1	32° 17' 58''	26° 00' 43''	102	1	32° 16' 49''	26° 01' 16''	60
2	32° 25' 30"	26° 03' 47"	115	2	32° 20' 29''	26° 05' 07''	90
3	32° 31' 02''	26° 06' 02''	85	3	32° 31' 36''	26° 07' 09''	90
4	32° 34' 34 "	26° 06' 27''	95	4	32° 34' 34"	26° 06' 27''	80
5	32° 37' 58"	26° 06' 30''	75	5	32° 37' 58''	26° 06' 30''	75
6	32° 37' 58"	26° 09' 00''	77	6	32° 37' 58''	26° 09' 00''	70
7	32° 44' 45 "	26° 11' 30''	50.4	7	32° 40' 14''	26° 11' 07''	60
8	32° 44' 21"	26° 06' 44''	99	8	32° 44' 21''	26° 06' 40''	55
9	32° 44' 22''	26° 06' 44''	57	9	32° 44' 22''	26° 06' 41''	65
10	32° 46' 02 "	26° 01' 30''	77	10	32° 45' 02''	26° 01' 30''	70
11	32° 45' 19"	25° 58' 29 "	75	11	32° 45' 19"	25° 58' 29"	62
12	32° 43' 41"	25° 55' 32''	80	12	32° 43' 31"	25° 55' 33"	68
13	32° 43' 41 "	25° 52' 19"	79	13	32° 43' 41''	25° 51' 19''	77
14	32° 43' 51"	25° 49' 26''	90	14	32° 43' 51"	25° 49' 26''	64
15	32° 41' 37"	25° 46' 42''	77	15	32° 41' 32''	25° 48' 42''	61
16	32° 39' 11"	25° 44'54''	88	16	32° 39' 11''	25° 44' 50''	58
17	32° 37' 32''	25° 42' 40''	72	17	32° 42' 52''	25° 42' 29''	95
18	32° 33' 26''	25° 39' 26''	80	18	32° 36' 12''	25° 38' 04''	90
19	32° 28' 17"	25° 36' 20''	100	19	32° 30' 23"	25° 34' 42"	90
20	32° 28' 29''	25° 31' 05''	98	20	32° 30' 43''	25° 29' 28''	75
21	32° 32' 11''	25° 26' 00''	91	21	32° 34' 08''	25° 24' 20''	53
22	32° 32' 42''	25° 20' 63''	110	22	32° 34' 35''	25° 18' 50''	110
23	32° 33' 27''	25° 13' 53''	80	23	32° 36' 37''	25° 15' 16''	80
24	32° 36' 24''	25° 13' 53''	95	24	32° 38' 58''	25° 13' 35''	100
25	32° 39' 07''	25° 12' 20''	90	25	32° 42' 00''	25° 11' 52''	125
26	32° 42' 01''	25° 10' 47''	100	26	32° 44' 33''	25° 09' 37"	85
27	32° 44' 02''	25° 08' 19''	72	27	32° 48' 25''	25° 07' 08''	75
28	32° 46' 21''	25° 06' 06''	98	28	32° 48' 56''	25° 06' 44''	250
29	32° 49' 25''	25° 04'51''	135	29	32° 51' 02''	25° 04' 78''	95
30	32° 51' 30"	25° 02' 10''	102	30	32° 52' 58''	25° 02' 25"	105
31	32° 52' 29''	24° 59' 40''	130	31	32° 55' 30''	24 ° 59' 34''	80
Mean±SD		89±18	Mean	⊧SD		84±35	

 Table 3
 Ambient dose rate measured in both sites of Nile River from Nag-Hamadi to Idfo on November 2, 2006

Sample No.	²²⁶ Ra/Bq·kg ⁻¹	²³² Th Bq·kg ⁻¹	/ 40K / Bq·kg ⁻¹	$D / nSv \cdot h^{-1}$	$D / nGy \cdot h^{-1}$	Raeq / Bq·kg ⁻¹	$I_{\gamma}/\mathrm{Bq}\cdot\mathrm{kg}^{-1}$	$D_{\rm eff}/{ m mSv}\cdot{ m a}^{-1}$
1	8.5 ±1.5	10.5±1.3	148±9	18.9±2.2	16.5±1.9	34.9±4.1	0.26±0.03	0.020±0.002
2	12.4±1.6	10.3±1.6	239±14	25.2±2.6	21.9±2.3	45.6±4.9	0.35±0.04	0.030±0.003
3	12.6±1.2	10.1±1.4	189±12	22.8±2.1	19.8±1.9	41.5±4.1	0.31±0.03	0.020±0.002
4	16.1±1.6	12.7±1.5	224±13	28.1±2.5	24.4±2.2	51.5±4.7	0.38±0.03	0.030±0.003
5	13.8±1.6	12.2±1.7	249±14	27.8±2.7	24.1±2.3	50.4±5.1	0.38±0.04	0.030±0.003
6	14.2±1.6	14.9±1.7	191±12	27.0±2.6	23.5±2.2	50.2±4.9	0.37±0.04	0.030±0.003
7	11.2±1.6	16.0±2.2	292±16	31.1±3.2	27.0±2.8	56.55±6.02	0.43±0.04	0.033±0.003
8	12.5±1.5	12.4±1.9	239±14	26.7±2.8	23.2±2.4	48.64±5.27	0.37±0.04	0.028±0.003
9	11.3±1.5	12.9±1.9	237±14	26.4±2.8	22.9±2.4	48.11±5.24	0.36±0.04	0.028±0.003
10	12.5±1.5	13.0±2.0	230±14	26.7±2.8	23.2±2.5	48.78±5.39	0.37±0.04	0.028±0.003
Mean	12.5±1.5	12.5±1.7	224±13	26.1±2.6	22.7±2.3	47.62±4.96	0.36±0.04	0.028±0.003

Table 4 External gamma dose rate, Ra equivalent activity (R_{aeq}), representative level index (I_{γ}), and effective dose rate (mSv·a⁻¹) from soil samples in Qena, Egypt

4 Conclusion

Activity levels in the soil of Qena, Egypt have been measured. The mean activity of ²²⁶Ra, ²³²Th and ⁴⁰K were found to be 12.5±1.5, 12.5±1.7 and 224±13 Bq·kg⁻¹, respectively. The mean radium equivalent activity Ra_{eq}, representative level index, and terrestrial absorbed dose rate for the area under investigation are 47.62 ± 4.96 Bq·kg⁻¹, 0.36 ± 0.04 Bq·kg⁻¹, and 22.7 ± 2.3 nGy·h⁻¹, respectively. The levels of ²²⁶Ra, ²³²Th, and ⁴⁰K in the soil of the Qena were comparatively less than the world average whereas radium equivalent activity, external hazard index, internal hazard index and terrestrial absorbed dose rate were below the recommended limits.

References

- Quindos L S., Fernandez PL, Soto J, et al. Health Phys, 1994, 66: 194-200.
- 2 Harb S, Thesis Z S R. Hannover University, Germany, 2004. <u>http://www.zsr.uni-hannover.de/arbeiten /drharb.pdf</u>.
- 3 International standards organization (ISO). Guide to the Expression of Uncertainty in Measurement, ISO, Geneva, 1995.

- 4 International Commission on Radiation Units and Measurements, ICRU Report 53, 1994.
- 5 Kemski J, Klingel R, Siehl A, Umweltradioaktivität, Ernst und Sohn Verlag, 1996.
- 6 Beretka J, Mathew P J. Health Phys, 1985, 48: 87-95.
- 7 NEA-OECD, Report by NEA Group of Experts. OECD, Paris, 1979.
- 8 UNSCEAR: Report to General Assembly, with Scientific Annexes, Sources and Effects of Ionizing Radiation, New York: United Nations, 2000.
- 9 Tahir S N A, Jamil K, Zaidi H J, et al. Radia Prot Dosi, 2005, 113: 421-427.
- 10 Jibiri N N, Farai I P. Radioprotection, 2005, 40: 489-501.
- 11 UNSCEAR: Report to General Assembly, with Scientific Annexes, Sources and Effects of Ionizing Radiation, New York: United Nations, 1988.
- 12 UNSCEAR Report to General Assembly, with Scientific Annexes, Sources and Effects of Ionizing Radiation, New York: United Nations, 1977.
- 13 Abbady A G E, Uosif M A M, El-Taher A. J Envir Radio, 2005, 84: 65-78.
- 14 Marouf B A, Mohamed A S, Taha J S. Sci. Tot. Environm. 1993, 133: 133-137.