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Abstract  In this paper we discuss neural network-based matrix effect correction in energy dispersive X-ray 

fluorescence (EDXRF) analysis, with detailed algorithm to classify the samples. The method can correct the matrix 

effect effectively through classifying the samples automatically, and influence of X-ray absorption and enhancement 

by major elements of the samples is reduced. Experiments for the complex matrix effect correction in EDXRF 

analysis of samples in Pangang showed improved accuracy of the elemental analysis result. 
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1 Introduction 

In energy dispersive X-ray fluorescence (EDXRF) 

analysis, matrix effect can be caused by different 

factors. For a thick sample that consists of multiple 

elements in considerable contents, such as in mineral 

samples, photon numbers of characteristic X-rays of a 

high Z element can be reduced by edge absorption of 

the adjacent lower Z element. And the effect differs 

from element to element. Besides, samples of the same 

type collected from different cites often have different 

amounts of major and minor elemental contents[1]. 

The complex matrix effect may make the EDXRF 

technique ineffective. Therefore, it is important to 

establish a matrix effect correction model for such 

kind of samples in their EDXRF analysis. And 

derivation of a standard curve for the elemental 

analysis depends on the sample classification to 

correct the matrix effect. 

2 Model 

As shown in Fig.1, the neural network-based 

matrix effect correction model (NNBMECM) consists 

of four layers from left to right: 1) the input layer, 2) 

the sample classification layer, 3) the non-linear layer, 

and 4) the output layer. The input of non-linear layer 

relays on the output of sample classification layer. 

 

Fig.1  Neural network based matrix effect correction model. 

The input layer is X-ray fluorescence counts of 

different elements in the sample. The sample 

classification layer is based on the self-organizing 

mapping (SOM) neural network[2]. It provides sample 

result to the non-linear layer, which calculates the 

elemental contents with different standard curves of 

respective samples. The output layer gives results of 

the analysis. 

3 Algorithm 

The sample classification layer has two sublayers: 

the input layer consisting of N input neural cells and 

the competition layer consisting of M×M output neural 
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cells, hence the formation of a planar plane array, in 

which the neural cells of the input and competition 

layers are connected one to another, The neural cells in 

the competition layer are connected, but border side of 

the neural cells restrain each other. The NNBMECM 

catches the sample character by training the input 

mode repeatedly, so as to perform classification of the 

samples and to show the classification result of the 

input modes in the competition layer. When the 

classification layer receives an input similar to a 

subsistent mode, it will recall the modes for the 

classification. For nonexistent modes, it will remember 

the character for new samples, without affecting the 

memory. Consequently, a new kind of classification 

will be added to classification layer.  

According to mechanism of the matrix effect in 

XRF analysis, input parameters of the NNBMECM are 

XRF counts of the elements in the sample. Given the 

number of elements to be detected is N, input mode of 

the sample classification layer is 
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The NNBMECM decides the sample kind 

according to Eq.(2), and finds its corresponding 

standard work curve, so as to perform quantitative 

analysis of the element.  
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With a series of standard samples, the 

NNBMECM can be trained to resolve the sample 

characteristic into the classification layer connection 

during the course of demarcating phase for EDXRF 

analysis. For samples of similar characteristics, each 

group has a corresponding standard curve. When the 

NNBMECM completes the training phase, it analyzes 

easily element’s contents of new mineral samples. 

4 Experiment 

In the experiment, we used material mixtures in 

sinter process (such as titanium ore concentrate, iron 

ore concentrate, titanium gangue, iron gangue and 

original mine，from tens of factories home and abroad) 

and artificial mixtures. Therefore, great changes in 

elemental content of the samples, and evident matrix 

effect, would be expected. Nineteen groups of core 

sample, coded as K1 to K19, were analyzed for main 

elements of Fe, Ti and Si，with the minor elements of 

Ca, V, Ni, Cu, Zn, As, Pb and Cr. 

All samples were treated by 1 h drying at 110℃ 

ground into powder and 180 mesh sieved. They were 

measured by EDXRF under the same environment 

with the same detection geometry. 

We have a demarcating to the X-ray tube XRF 

analyzer. Major elements of the mineral samples were 

detected. They are Fe, Ti, Si, Ca, V, Ni, Cu, Zn and Cr, 

hence the classification layer input vector of 

Xi(i=1,…,9) for their X-ray count rates, respectively. 

In classifying the 19 core samples using the SOM 

neural net, the samples that touch off the same neural 

cell were in the same type, and six classifications were 

obtained, as shown in Table 1. Type I has four groups 

of titanium ore concentrate containing Fe, Ti and V. 

Type  Ⅱ has three groups of titanium gangue 

containing Fe, Ti, V and Zn. Type III has four groups 

of iron ore concentrate containing Fe, Ti, Cr, Cu, Ni 

and V. Type IV has three groups of iron gangue 

containing Fe, Ti, Cu and V. Type V has two groups of 

original mine containing Fe, Ti, Cr, Cu, V and Zn. 

Type VI has three groups of sinter mineral containing 

Fe, Ti and V. It is well classified by neural net to 

identify right type of core samples. This will provide a 

suggestion to establish different analysis mathematic 

models or equations to analyze different types of the 

samples. Table 2 shows the major element contents in 

the core samples analyzed by chemical analysis and 

artificial neural network (ANN) analysis methods or 

cluster analysis[4]. 

From Table 2, it is clear that results of the neural 

network based method agree with the actual contents 

of the samples, with absolute errors being less than 10 

mg/g for Fe in the samples. In type VI sample groups 

(sinter mineral), absolute errors of the Si、Ca、Fe are 

just 0.152, 0.142, 0.245 (10 mg·g-1), respectively, 

while those of the cluster method are 0.322, 0.412, and 

0.504 (10–2 g·g-1), respectively. This illustrates that by 

combining the SOM neural network based sample 

sorting with the new generation tube excitation XRF 

analyzer, the matrix effect can be better corrected. This 

makes a good base for applying the XRF analysis to 

mine and iron & steel industries. 
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Table 1  Results of auto-classification of the samples 

Types Groups and Ab. Major elements Type of raw material 

I K1/K15/K9/K18 Fe2O3/TiO2/V Titanium ore concentrate 

II K2/K5/K14 Fe2O3/TiO2/V/Zn  Iron gangue 

III K3/K6/K7/K10 Fe2O3/TiO2/Cr/Cu/Ni/V Iron ore concentrate 

IV K8/K11/K13 Fe2O3/TiO2/Cu/V Titanium gangue 

V K4/K16 Fe2O3/TiO2/Cr/Cu/V/Zn original mine 

VI K12/K17/K19 Ca/SiO2/Fe2O3 Sinter mineral 

Table 2  Major element content (in 10–2 g·g-1) in different types and groups of samples by different analysis methods 

Types Groups Methods Fe Ti V Zn Cr Cu Ni Si Ca 

 I K1 Chemical 33.712 26.246 0.051 — — — — — — 

  ANN 34.512 26.869 0.053 — — — — — — 

 K15 Chemical 35.043 27.282 0.053 — — — — — — 

  ANN 34.602 26.939 0.053 — — — — — — 

 K9 Chemical 34.366 26.755 0.052 — — — — — — 

  ANN 34.483 26.846 0.053 — — — — — — 

 K18 Chemical 33.710 26.244 0.051 — — — — — — 

  ANN 34.502 26.861 0.052 — — — — — — 

II K2 Chemical 14.849  3.316  0.046  0.010  — — — — — 

  ANN  14.426  3.221  0.045  0.018  — — — — — 

 K5 Chemical 14.563  3.252  0.045  0.010  — — — — — 

  ANN  14.582  3.257  0.045  0.006  — — — — — 

 K14 Chemical 14.285  3.190  0.044  0.01  — — — — — 

  ANN  14.459  3.229  0.045  0.021  — — — — — 

III K3 Chemical 53.398  7.553  0.332  — 0.026 0.014  0.011  — — 

  ANN  53.614  7.584  0.334  — 0.026 0.016  0.011  — — 

 K6 Chemical 52.372  7.408  0.326  — 0.026 0.014  0.010  — — 

  ANN  52.378  7.434  0.345  — 0.028 –0.029  0.011  — — 

 K7 Chemical 53.389  7.552  0.332  — 0.026 0.014  0.011  — — 

  ANN  52.738  7.460  0.328  — 0.025 0.031  0.011  — — 

 K10 Chemical 52.386  7.410  0.326  — 0.026 0.014  0.010  — — 

  ANN  52.673  7.451  0.327  — 0.025 0.050  0.011  — — 

 
(To be continued in next page) 
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Table 2  (Continued) 

Types Groups Methods Fe Ti V Zn Cr Cu Ni Si Ca 

IV K8 Chemical 19.208  5.614  0.007  — — 0.012  — — — 

  ANN  19.128  5.591  0.007  — — 0.012  — — — 

  A-err. –0.080  –0.023  0  — — 0  — — — 

 K11 Chemical 18.834  5.505  0.007  — — 0.012  — — — 

  ANN  18.947  5.538  0.007  — — 0.012  — — — 

 K13 Chemical 18.475  5.400  0.007  — — 0.011  — — — 

  ANN  19.814  5.791  0.007  — — 0.012  — — — 

  A-err. 1.339  0.391  0  — — 0.001  — — — 

V K4 Chemical 30.570  6.266  0.156  0.019  0.012 0.015  — — — 

  ANN  31.414  6.440  0.059  –0.081 0.012 0.015  — — — 

 K16 Chemical 30.569  6.266  0.156  0.019  0.012 0.015  — — — 

  ANN  30.892  6.332  0.357  0.220  0.012 0.015  — — — 

VI K12 Chemical 56.680 — — — — — — 5.280 10.200 

  Cluster 57.156 — — — — — — 5.554 10.612 

  ANN  56.985 — — — — — — 5.412 10.332 

 K17 Chemical 54.790 — — — — — — 5.540 11.860 

  Cluster 55.294 — — — — — — 5.786 11.682 

  ANN  55.033 — — — — — — 5.638 11.848 

 K19 Chemical 58.432 — — — — — — 5.023 8.994 

  Cluster 58.788 — — — — — — 5.230 9.347 

  ANN  58.655 — — — — — — 5.175 9.097 

            

5 Conclusion 

The matrix effect correction model is based on 

self-organizing mapping neural network in EDXRF 

analysis. Comparing with conventional classifying and 

estimating methods, it has higher recognition ability to 

the samples, and has the characters of self-study and 

self-organizing. The neural network based sample 

classification layer is applied to the XRF analysis in an 

iron & steel company (Pan Gang) for correcting the 

matrix effect, and the analysis errors from 

conventional correcting methods were greatly reduced. 

But it has still some deficiencies. For example, the 

classifying arithmetic should be optimized to make it 

more efficient and dynamical, and the standard 

working curves should be founded automatically. 

Further programs are underway to solve the problems. 
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