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Flavor-mixing induced by the mismatched vector interactions at finite µI
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The relation between the vector-isoscalar and vector-isovector interactions in the two-flavor Nambu-Jona-
Lasinio (NJL) model is investigated under the different constraints from QCD. We demonstrate that the flavor-
mixing can be induced by the mismatched vector-isoscalar and vector-isovector interactions at finite baryon
chemical potential µ and isospin chemical potential µI . The effect of this non-anomaly flavor-mixing on the
possible separate chiral transitions at nonzero µI is studied under the assumption of the effective restoration
of U(1)A symmetry. We find that for the weak isospin asymmetry, the two separate phase boundaries found
previously can be converted into one only if the vector-isovector coupling gv

v is significantly stronger than the
vector-isoscalar one gs

v without the axial anomaly.
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I. INTRODUCTION

Plotting the map of QCD phase diagram at finite tempera-
ture T and quark chemical potential µ has attracted growing
interests. Especially, a chiral critical endpoint is predicted by
some model studies, which separates the crossover and the
first order phase transition. Currently, the lattice QCD com-
putations at finite density still struggle in a limited range of
µ [1]. So the existence and location of the critical endpoint
are still under debate due to the lack of reliable theoretical
methods for the non-perturbative dense QCD. Theoretically,
fluctuations of conserved charges, such as net-baryon, net-
charge and net-strangeness, are predicted to be sensitive to
the correlation length of the system [2–4] and directly con-
nected to some susceptibilities [5, 6]. Thus, the experi-
mental data related to these quantities can serve as powerful
tools to probe the critical endpoint in heavy-ion collisions:
the search for such a point is ongoing at RHIC (BES) [7–9]
and will be performed in the future facilities in GSI (FAIR)
and JINR (NICA). Moreover, unconventional multiple chiral
critical endpoints are also proposed: it is found in [10, 11]
that the finite isospin chemical potential µI may lead to two
critical endpoints; when considering the color superconduc-
tivity (CSC), the low-temperature critical endpoint(s) may
appear due to the interplay between the chiral and diquark
condensates [12–17].

Besides T and µ, the U(1)A anomaly may impact the QCD
phase transition significantly [18]. This point has been con-
firmed in model studies or Ginzberg-Landau analyses, where
the U(1)A anomaly is usually incorporated by introducing
the Kabayashi-Maskawa-’t Hooft (KMT) interaction [19–21].
The KMT interaction explicitly breaks the U(1)A symmetry
and gives rise to the flavor-mixing among light quarks: the
dynamical mass of u quark may contain contributions from
both d and s quark condensates; the diquark condensate for
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u-d pairing at moderate or high baryon density may make
contribution to the s quark mass. Consequently, the U(1)A
anomaly may affect not only the properties of the traditional
critical endpoint [22], but also that of the unconventional one:
the separation of chiral transition due to finite µI [10, 11] may
be removed by the anomaly flavor-mixing [23]; a new critical
endpoint at low temperature could be induced in the presence
of the color flavor locking (CFL) CSC [13].

However, the recent lattice calculations indicate that the
U(1)A symmetry may be restored obviously near and above
Tc for zero µ [24, 25]. The effective restoration of the U(1)A
symmetry would influence the universality class and criti-
cal properties of the chiral transition [26]. Phenomenologi-
cally, the model studies suggest that the properties of the con-
ventional critical endpoint are quite sensitive to the degree
of U(1)A restoration [22]. Moreover, if the anomaly related
flavor-mixing is very weak near the phase boundary, the two
critical endpoints due to the isospin asymmetry [10, 11] could
still be possible due to the decouple of light quarks.

On the other hand, it is also probable that the non-anomaly
flavor-mixing can be induced by other ingredients of QCD,
especially under some condition. The main purpose of this
work is to study the possible non-anomaly flavor-mixing of
light quarks and its effect on the chiral phase transition under
the isospin asymmetry. In particular, we will focus on the fate
of the two critical endpoints due to the separate chiral transi-
tions found in [10, 11] with the assumption of the effective
restoration of U(1)A symmetry near the phase boundary.

Our starting point is the four-quark vector interactions with
different coupling strengths in the isovector and isoscalar
channels. The effect of vector interactions on the chiral tran-
sition has been extensively studied in the NJL-type model of
QCD. A well-known result is that the chiral transition at finite
µ is weakened by the vector-isoscalar interaction gs

v(ψ̄γµψ)2

and the critical point disappears for strong gs
v [12, 15, 22, 27].

It is also found that the gs
v in a proper range can lead to the

new low-temperature critical endpoint(s) [12] when consid-
ering the two-flavor CSC, especially with the constraint of
electric-charge neutrality [15, 17]. In general, gs

v and the
isovector coupling gv

v are independent coupling constants un-
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der the chiral symmetry. In the literature, the non-anomaly
flavor-mixing due to the mismatched vector interactions in
the vacuum has been discussed in Ref. [28] based on a three-
flavor NJL model. We extend such a work to finite T and µ
to study the effect of the non-anomaly flavor-mixing on the
chiral transition with isospin asymmetry.

II. EXTENDED NJL-TYPE MODEL WITH
MISMATCHED VECTOR INTERACTIONS

A. The general four-quark interaction model with
mismatched vector interactions under the chiral symmetry

We start with the following Lagrangian of four-quark inter-
action model for two-flavor QCD

L(4) = L
(4)
sym +L

(4)
det, (1)

with

L
(4)
sym = gs1

3∑
a=0

[(ψ̄τaψ)2 + (ψ̄τaiγ5ψ)2]

− gv2

3∑
a=0

[(ψ̄τaγµψ)2 + (ψ̄τaγµγ5ψ)2]

− gv3[(ψ̄τ0γµψ)2 + (ψ̄τ0γµγ5ψ)2]

− gv4[(ψ̄τ0γµψ)2 − (ψ̄τ0γµγ5ψ)2], (2)

and

L
(4)
det = gs2{det[ψ̄(1 − γ5)ψ] + h.c.}

= gs2[(ψ̄ψ)2 − (ψ̄~τψ)2 − (ψ̄iγ5ψ)2 + (ψ̄~τiγ5ψ)2], (3)

where τ0, and ~τ refer to the unit matrix and Pauli matrices
in the flavor space, respectively. The former term L(4)

sym in
(1) is the general Fierz-invariant form of the four-quark inter-
actions in color-singlet channels which respecting the global
flavor symmetries of S U(2)V⊗S U(2)A⊗U(1)V⊗U(1)A [29].
The latter one L(4)

det is the KMT interaction induced by the
gauge configurations of instanton and anti-instanton [19, 20],
which only possesses the S U(2)V⊗S U(2)A⊗U(1)V global fla-
vor symmetries.

As mentioned, we will focus on the flavor-mixing arising
from the mismatched vector interactions at finite density. We
see that three of four independent coupling constants in L(4)

sym
are related to the vector and axial vector interactions. Gen-
erally, the nozero sum gv3 + gv4 implies that the vector cou-
pling strength in the isovector channel is different from that
in the isoscalar one. Similarly, the non-vanishing gv3 − gv4
indicates the axial-vector interactions are also mismatched in
the isovector and isoscalar channels. How the vector cou-
pling difference gives rise to the non-anomaly flavor-mixing
at finite density will be detailed in next section.

The axial-vector interaction may be responsible for the de-
viation of the chiral magnetic effect in the recent lattice cal-
culation compared to the analytic formula, as proposed in
Ref. [30]. Here we mainly study the chiral phase transition in

the MFA, the axial-vector interactions in Lagrangian (1) will
be ignored. Thus we only consider the the following effective
Lagrangian,

L
(4)
eff

= gs1

3∑
a=0

[(ψ̄τaψ)2 + (ψ̄τaiγ5ψ)2]

+ gs2[(ψ̄ψ)2 − (ψ̄~τψ)2 − (ψ̄iγ5ψ)2 + (ψ̄~τiγ5ψ)2]

− gs
v(ψ̄γµψ)2 − gv

v(ψ̄~τγµψ)2, (4)

where the independent coupling constants are reduced to four.

B. Unequal vector coupling constants in the mean field
Hartree-Fork approximation

Here we stress that the vector coupling difference in the
MFA can also arise from a very popular version of the NJL
model [29],

L(4) = gs1

3∑
a=0

[(ψ̄τaψ)2 + (ψ̄τaiγ5ψ)2]

+ gs2[(ψ̄ψ)2 − (ψ̄~τψ)2 − (ψ̄iγ5ψ)2 + (ψ̄~τiγ5ψ)2]

− gv

3∑
a=0

[(ψ̄τaγµψ)2 + (ψ̄τaγµγ5ψ)2], (5)

in which only one vector coupling gv is adopted. In the
Hartree approximation, there is no difference between the
coupling strengths of the two vector interactions at the mean
field level for Lagrangian (5).

However, the effective vector couplings (in the sense of
direct interaction) in the isoscalar and isovector channels will
differ from each other if the Fock contribution is also consid-
ered. For a four-fermion interaction, the Fock contribution
can be easily evaluated according to its Fierz transformation
[29]. Taking into account the exchange terms, the effective
direct four-quark interactions of the Lagrangian (5) take the
following form

L(4)
eff-direct = L(4) +L

(4)
Fock

= (gs1 + gs2 +
gs2

2Nc
)[(ψ̄ψ)2 + (ψ̄iγ5~τψ)2]

+ (gs1 − gs2 −
gs2

2Nc
)[(ψ̄~τψ)2 + (ψ̄iγ5ψ)2]

− gv

3∑
a=0

[(ψ̄τaγµψ)2 + (ψ̄τaγµγ5ψ)2]

− (
gv

Nc
+

1
2

gs1

Nc
)(ψ̄τ0γµψ)2

− (
gv

Nc
−

1
2

gs1

Nc
)(ψ̄τ0γµγ5ψ)2, (6)

where Nc is the color number of the quarks. The effective
Lagrangian (6) clearly shows that the exchange terms give
rise to the vector coupling difference in the Hartree-Fock ap-
proximation (HFA), which is at the order of O(1/Nc) com-
pared to gs1 and gv. Note that the similar result in a three-
flavor NJL model has been given in [28].
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If both gv and gs1 in (5) originate from the color current-
current interaction g(ψ̄γµλa

cψ)2, they fulfill the relation gv =

gs1/2 according to the Fierz transformation. In this case, the
vector coupling difference shown in (6) becomes

δgv = gs
v − gv

v =
2

Nc
gv =

gs1

Nc
. (7)

This equation indicates that gs
v in (4) may be larger than gv

v
and their difference is considerable compared to gv or gs1 for
Nc = 3.

C. Constraints on the vector interactions from the lattice
chiral curvatures

Even Eq. (7) implies that the coupling gv
v is weaker than gs

v,
it is also possible that gv

v may be stronger than gs
v. This can be

understood from the curvature difference for the chiral phase
transition at finite baryon and isospin chemical potentials ob-
tained in recent lattice calculations [31].

For small baryon and isospin densities, the chemical
potential dependence of the pseudo-critical temperature for
the chiral crossover can be expressed as

Tc(µq, µi) = Tc + Aqµ
2
q + Biµ

2
i + O(µ4

q/i, µ
2
qµ

2
i ) , (8)

where Tc is the chiral pseudo-critical temperature at zero
quark chemical potential (In this subsection, µq and µi are
used to refer to the quark baryon and isospin chemical poten-
tials, respectively). Notice that Tc(µq, µi) is an even function
of µq/i [32]. So at the order of µ2

q/i, we can expand Tc(µ2
q/i) as

Tc(µ2
q/i) = Tc(1 − κq/i

µ2
q/i

T 2
c

), (9)

where the two chiral curvatures are defined as

κq/i = −Tc
dTc(µ2)

dµ2
q/i

|µ=0. (10)

The lattice QCD simulation in [31] suggests that the curva-
ture κq is about 10% greater than κi.

Recently, the role of gs
v on the determination of κq has been

studied in a Polyakov-loop enhanced three-flavor NJL model
[22]. It is found that κq decreases with gs

v and to reproduce the
lattice κq the gs

v must keep relatively larger value compared to
gs. The authors of Ref. [22] then propose the lattice κq can be
used as a useful constraint on gs

v.
We can directly extend this idea to determine κi by replac-

ing µq with µi. As will be demonstrated in the next section,
the coupling gv

v influences the curvature κi in the similar way
as gs

v does on κq. In particular, κi and κq obtained at the
MFA of the two-flavor NJL model will take the same value
for gv

v = gs
v. In other words, the lattice curvature difference

between κi and κq can be regarded as an useful evidence for
the unequal vector coupling strengths.

Since the two-flavor lattice calculation in [31] indicates that
κi is less than κq, we thus infer that gv

v may be larger than

gs
v near the chiral phase boundary for zero and small quark

chemical potential. Following the spirit of Ref. [22], our nu-
merical study suggests that gv

v is about 10% larger than gs
v near

Tc according to the lattice curvatures in [31]. Note that this
conclusion is quite different from the estimation given in (7).

D. Constraints on the vector interactions from the couplings
of vector mesons to nucleons and lattice susceptibilities

In Ref. [33], it is argued that the ratio of the couplings of
ω and ρ mesons to nucleons can be used as a constraint on
the vector coupling difference. In the chirally broken phase,
the empirical value for this ratio is given by gωNN/gρNN ' 3,
whereas in the chirally symmetric phase it is expected to be
one. It is then proposed that the ratio gv

v/g
s
v is located in the

range from 1/3 to 1.
In addition, another quite similar estimation is given in

Ref. [34], where the vector coupling difference is expressed
as the function of two susceptibilities χq and χI under some
assumptions. Using the lattice data for these susceptibilities
as input, it is found that gv

v is always less than gs
v: their dif-

ference is quite large below Tc which approaches zero rapidly
above Tc for zero chemical potential.

All the arguments given in the above subsections suggest
that the vector interactions are repulsive (namely, gs

v and gv
v

are all positive), but the relation between the gs
v and gv

v re-
mains uncertain. In the following study, gs

v and gv
v in (4) will

be treated as the free parameters due to these uncertainties.

III. VECTOR-INTERACTION INDUCED
FLAVOR-MIXING AND THE THERMAL DYNAMICAL

POTENTIAL AT FINITE BARYON AND ISOSPIN
CHEMICAL POTENTIALS

In this section, we shall demonstrate that the vector
coupling difference can lead to non-anomaly flavor-mixing at
finite baryon and isospin densities.

The full Lagrangian of two-flavor NJL model with the
interaction (4) reads

L = ψ̄
(
i∂µγµ + γ0µ̂ − m̂0

)
ψ +L

(4)
eff
, (11)

where the quark chemical potentials are introduced and m̂0 =

diag(mu,md) is the current quark matrix. We shall adopt the
isospin symmetric quark masses with mu = md ≡ m0. The
µ̂ in the Lagrangian (11) is the matrix of the quark chemical
potentials which takes form

µ̂ =

(
µu

µd

)
=

(
µ − µI

µ + µI

)
, (12)

with

µ =
µu + µd

2
=
µB

3
and µI =

µu − µd

2
=
δµ

2
. (13)

In (13), µB (µI) is the baryon (isospin) chemical potential.
Note that the definition of the isospin chemical potential in
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the quark level is different from that in the nucleon level. For
more details on the role of isospin symmetry energy in nu-
clear matter, the reader can refer to [35–38] and references
therein.

At finite densities, the quark chemical potentials are shifted
by the vector interactions. Here we use µ′ to denote the modi-
fied quark chemical potential. Note that the u quark density is
different from the d quark one under the isospin asymmetry.
The shifted quark chemical potentials take the form

µ′u(d) = µu(d) − 2gs
v(ρu + ρd) − 2gv

v(ρu(d) − ρd(u))

= µu(d) − 2(gs
v + gv

v)ρu(d) − 2(gs
v − gv

v)ρd(u), (14)

or

µ′ = µ − 2gs
v(ρu + ρd), µ′I = µI − 2gv

v(ρu − ρd) (15)

where

ρu(d) = 〈ψ†u(d)ψu(d)〉, (16)

is the u (d) quark number density. Eq. (14) clearly shows
that due to the vector coupling difference, not only ρu but
also ρd give contribution to the effective chemical potential of
u quark, and vise versa. This implies that the flavor-mixing
arises due to the vector interaction. As mentioned, this mix-
ing has nothing to do with the axial anomaly. The modified
chemical potentials can also be rearranged as Eq. (15), which
indicates that µ and µI are shifted by the isoscalar and isovec-
tor vector interactions, respectively.

Formally, the non-anomaly flavor-mixing shown in (14)
for the modified chemical potentials is quite similar to
the anomaly flavor-mixing for the constituent quark masses
induced by the instantons, namely:

Mu(d) = m0 − 4gs1φu(d) − 4gs2φd(u), (17)

where

φu(d) = 〈ψ̄u(d)ψu(d)〉, (18)

is the u (d) quark condensate.
Using the conventional technique, the mean field thermal

dynamical potential of the Lagrangian (11) is expressed as

Ω(T, µu, µd) =∑
f =u,d

Ω0(T, µ′ f ; M f ) + 2gs1(φ2
u + φ2

d) + 4gs2φuφd

− (gs
v + gv

v)(ρ2
u + ρ2

d) − 2(gs
v − gv

v)ρuρd, (19)

where Ω0(T, µ′ f ; M f ) is the contribution of a quasi-particle
gas of the flavor f which takes the form

Ω0(T, µ′ f ; M f ) =

− 2NcT
∫

d3 p
(2π)3

[
ln[1 + exp(−(E f − µ

′
f )/T )]

+ ln[1 + exp(−(E f + µ′ f )/T )]
]

− 2Nc

∫
d3 p

(2π)3 E f θ(Λ2 − ~p2), (20)

with the quasi-particle energy E f =
√
~p2 + M2

f . The Λ in
Eq. (20) is the parameter of three-momentum cutoff in the
NJL model. We see that besides the modified chemical po-
tential µ′f , the flavor-mixing due to the vector coupling differ-
ence is also explicitly demonstrated in Eq. (19) via the direct
coupling between ρu and ρd.

Minimizing the thermal dynamical potential Eq. (19), the
motion equations for the mean fields φu, φd, ρu and ρd are
determined through the coupled equations

∂Ω

∂φu
= 0,

∂Ω

∂φd
= 0,

∂Ω

∂ρu
= 0,

∂Ω

∂ρd
= 0. (21)

This set of equations is then solved for the fields φu,
φd, ρu and ρd as functions of the temperature and chemical
potentials.

IV. FATE OF THE SEPARATE CHIRAL TRANSITIONS
WITH NON-ANOMALY FLAVOR-MIXING

As mentioned, the separate chiral transitions due to finite
µI [10, 11] can be removed by the flavor-mixing induced by
the axial anomaly [23]. Since the instanton density may be
suppressed significantly near the phase boundary, we revisit
this problem by taking into account the non-anomaly flavor-
mixing due to the mismatched vector interactions.

For comparison, we follow the notations in Ref. [23] and
introduce two parameters α and gs which are defined as

gs1 = (1 − α)gs, gs2 = αgs, (22)

here α means the ratio of the KMT interaction in the scalar-
pseudoscalar channel, which is treated as a free parameter
in the following calculations. The other model parameters,
namely the current quark mass m0, the scalar coupling con-
stant gs and the three-momentum cutoff Λ are all adopted
from [23].

A. Fate of separate chiral transitions under the weak isospin
asymmetry without the axial anomaly

The role of the mismatched vector interactions on the sepa-
ration of chiral transition at finite T -µ under the weak isospin
asymmetry is investigated by switching off the KMT interac-
tion. We focus on whether the two critical endpoints found
previously could be ruled out by the non-anomaly flavor-
mixing without the help of the axial anomaly.

We first study the cases for gv
v > gs

v with a fixed small
coupling gs

v = 0.2gs under the weak isospin asymmetry
δµ = −20 MeV (The typical value of δµ in heavy ion colli-
sions may be within this range, as estimated in [23]) 3. The
T–µ phase diagrams for varied gv

v are shown in Fig. 1. For

3 Note that the µI defined in [23] corresponds to the δµ in our notations
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Fig. 1. (Color online) The T -µ phase diagrams for varied vector-
isovector coupling gv

v at δµ = −20 MeV without the axial anomaly.
The vector-isoscalar coupling gs

v is fixed as 0.2gs. The solid line
stands for the first-order chiral boundary.

gv
v = 2.0gs

v, Fig. 1(a) shows two separate first-order phase
boundaries, which correspond to the chiral transitions for the
u and d quarks, respectively. For gv

v = 0.6gs, Fig. 1(b) shows

that only one first-order chiral boundary emerges at the low
temperature, but it splits into two lines at the relatively higher
temperature. So there are still two critical endpoints. Fur-
ther increasing gv

v to 0.68gs, Fig. 1(c) displays that only one
phase boundary appears. So we really observe that the two
separate phase boundaries can be changed into one by the
non-anomaly flavor-mixing induced by the mismatched vec-
tor interactions.

The above calculation for δµ = −20 MeV is further ex-
tended to a fixed moderate coupling gs

v = 0.4gs. The phase
diagrams for varied gv

v with gv
v > gs

v are shown in Fig. 2, which
is still analogous to Fig. 1. In contrast to Fig. 1, a stronger gv

v
is required for the conversion of the two phase transitions into
one due to the enlarged gs

v. Fig. 2 also shows that the chiral
transition is first softened and then strengthened with gv

v. By
comparison, the chiral transition is always weakened with the
increase of gs

v.
So for the weak isospin asymmetry, Figs. 1 and 2 show

that the chiral transition separation can be removed by the
mismatched vector interactions, even without the instanton
induced flavor-mixing. Actually, all the two sets of phase di-
agrams in Figs. 1 and 2 are quite similar to Figs. 2 in Ref. [23]
obtained by changing the α. In this sense, the non-anomaly
flavor-mixing due to the vector coupling difference plays the
similar role as the KMT interaction.

However, Figs. 1 and 2 indicate that gv
v must be much

stronger than gs
v for turning the two chiral transitions into one:

gv
v is at least twice as strong as gs

v to remove the separation.
Of course, the fate of the separate chiral transitions depends
on not only the vector coupling difference, but also the mag-
nitudes of gv

v and gs
v. Here we do not show the results for

gv
v > gs

v with a fixed strong gs
v since in this case only crossover

transition appears.
On the contrary, we do not find the coincidence of the de-

tached phase boundaries for gv
v < gs

v. In Fig. 3, we show
the phase diagrams for δµ = −20 MeV with varied gs

v and
fixed coupling gv

v = 0.2gs. We see that the two separate phase
boundaries get farther rather than closer with the increase of
|δgv| for gv

v < gs
v, which is quite different from what shown in

Figs. 1 and 2.
The reason can be traced back to Eqs. (14) and (15). First,

according to Eq. (15), the |µ′I | is explicitly less than the |µI |

since the signs of µI and −2gv
v(ρu − ρd) in µ′I are different for

gv
v > 0. So for gv

v > gs
v with a fixed gs

v, increasing gv
v implies

not only the enhancement of the flavor-mixing but also the
reduction of |µ′I |. This is why the two phase boundaries ap-
proach each other with gv

v, as shown in Figs. 1 and 2. Second,
near the left side of the right phase boundary, the ρd is remark-
ably larger than the ρu because of the significant suppression
of the d quark mass; but around the left side of the left phase
boundary, the difference between the ρd and ρu is relatively
small. So for gs

v > gv
v, the flavor-mixing term −(gs

v − gv
v)ρd

in µ′u impacts the right phase boundary more significantly in
contrast to what the corresponding term −(gs

v − gv
v)ρu in µ′d

does on the left phase boundary, according to Eq. (14). This
is why the right phase boundary moves more rapidly towards
the higher µ with gs

v in contrast to the left one, as shown in
Fig. 3.
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Fig. 2. (Color online) The T -µ phase diagrams for varied vector-
isovector coupling gv

v at δµ = −20 MeV without the axial anomaly.
The vector-isoscalar coupling is fixed as gs

v = 0.4 (relative to the
scalar coupling gs). The solid line stands for the first-order chiral
boundary.

If gs
v or/and gv

v are strong enough, the first-order chiral tran-
sition will change into crossover and it would be no critical
point. Owning to vector interactions, it is possible that one
of the two phase boundaries first disappears while the other
one still remains with the change of vector interactions (In

(MeV)

(M
e
V

)

Fig. 3. (Color online) The T -µ phase diagrams for varied vector-
isoscalar coupling gs

v at δµ = −20 MeV. The vector-isovector cou-
pling is fixed as gv

v = 0.2 (relative to the scalar coupling gs). The
axial anomaly is ignored. All the lines stand for the first-order chiral
boundaries.

contrast, the two critical endpoints always appear at the same
temperature in Refs. [10, 11]). Such a case is really observed
in Fig. 3 for very strong vector interaction gs

v = 1.0gs. Actu-
ally, our numerical study suggests that the emergence of only
one critical endpoint via this manner does not require very
strong vector interaction when the weak KMT interaction is
included.

Here only the weak isospin asymmetry is considered be-
cause |µI | is small in heavy-ion collisions. On the other hand,
the quark matter may appear in the core of neutron star. In
such a case, the magnitude of the difference between the u
and d quark chemical potentials may be as large as 100 MeV
due to the constraint of charge neutrality4. For the strong
isospin asymmetry with a relatively large |µI |, we find that
the separation of the chiral transition can not be removed by
the non-anomaly flavor-mixing without considering the axial
anomaly. However, the similar phase diagram as Fig. 3 is still
observed for a proper choice of gv

v and gs
v.

V. DISCUSSION AND CONCLUSION

We have studied the influence of vector interactions with
different coupling constants in the isoscalar and isovector
channels on the possible separation of the chiral transition un-
der the isospin asymmetry in a two-flavor NJL model, where
the U(1)A symmetry is assumed to be restored effectively near
the phase boundary.

We first show that, besides the argument from the em-
pirically different nucleon and vector-meson couplings [33],

4 Note that in another case with |µI | > mπ/2 and vanishing µ, the pion con-
densation emerges at zero and low tmeperatures[39–41]
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the one-gluon exchange type interaction can also give rise to
unequal vector interactions with gs

v > gv
v in the MFA when

including the Fock contribution. On the other hand, by ex-
tending the work [24] to finite µI , we obtain the quite different
vector coupling difference with gs

v < gv
v from the constraints

of lattice chiral curvatures at zero/small quark chemical po-
tentials. We demonstrate that, similar to the mass-mixing
induced by the KMT interaction, the density-mixing of two
flavors is produced owning to the mismatched vector interac-
tions.

The role of the non-anomaly flavor-mixing on the chi-
ral phase transition is investigated under the condition with
weak isospin asymmetry. We find that to convert the two
separate chiral transitions into one, gv

v must be significantly

stronger than gs
v without the axial anomaly. In this situation,

the non-anomaly flavor-mixing induced by vector interactions
impacts the separation of chiral phase transitions in the sim-
ilar way as the anomaly one induced by instantons: the two
detached phase boundaries get closer first and then coincide
with the enhancement of the flavor-mixing.

Note that recently the Polyakov-Loop extended NJL model
has been extensively used to investigate the thermal and dense
properties of QCD. We stress that introducing the Polyakov-
Loop dynamics does not qualitatively change our main con-
clusions. In addition, our study can be directly extended to
the quark meson model of QCD by incorporating the quark-
vector-meson couplings. Especially, it is interesting to inves-
tigate the role of the non anomaly flavor-mixing on the possi-
ble quark-menson transition in neutron star [42].
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