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A nuclear density probe: isobaric yield ratio difference∗
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We report our recent progress on the nuclear symmetry energy probe, which is called the isobaric yield ratio
difference (IBD), and its application in neutron density determination in experiments. The results obtained by
the IBD, from which the isobaric yields in the measured 140A MeV 40,48Ca + 9Be and 58,64Ni + 9Be reactions,
and the calculated 80A MeV 38-52Ca + 12C reactions by using a modified statistical abrasion-ablation model,
show the sensitivity of the IBD to the density differences between reactions.
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I. INTRODUCTION

The symmetry energy of asymmetric nuclear matter,
especially neutron-rich matter, has been an important topic
in both theory and experiment with the development of
radioactive nuclear beam (RNB) facilities. The new or up-
dated RNB facilities can provide nuclear beams with larger
neutron-richness, which are supposed to promote the study of
neutron-rich nuclear matter and extend the chart of nuclides
to the more neutron-rich side. In heavy-ion collisions above
the intermediate energy, nuclear matter from sub-saturation
to supra-saturation densities can be produced. The symmetry
energy of nuclear matter depends on density and temperature.
In the past decade, though many probes have been proposed,
there are still difficulties in measuring the symmetry energy
of nuclear matter at different nuclear densities.

The isobaric yield ratio (IYR) method was first proposed
by Huang et al. to extract the symmetry-energy coefficient
for fragments with small isospins, which also have some tem-
perature since they are measured in heavy-ion collision [1, 2].
In the IYR, some terms deciding the fragment yield cancel
out, which makes it useful to study the symmetry energy term
of the fragment with a low temperature. The IYR method
is extended to study the symmetry energy of fragment with
larger neutron richness [3–6]. The results obtained by the
IYR method are compared to a similar method, i.e., isoscal-
ing, which extracts the symmetry energy of the colliding
source, showing a large difference between them [7–10]. We
studied the results of the IYR and isoscaling, and found that
though the IYR and isoscaling methods both aim at the ex-
traction of nuclear symmetry energy, the obtained results are
for different nuclear matter. A new probe was constructed via
IYR between two reactions, which is called the isobaric yield

∗ Supported by the Program for Science & Technology Innovation Talents
in Universities of Henan Province (No. 13HASTIT046) and the Young
Teacher Project in Henan Normal University
† Corresponding author, machunwang@126.com

ratio difference (IBD), and the results of the IBD and isoscal-
ing were found to be similar because they are both the probes
for the chemical potential of neutrons and protons in the re-
actions [11, 12]. Moreover, the IBD probe is also sensitive
to the density differences between the reactions [13, 14]. In
this article, we will summarize the recent progress on the IBD
method.

II. THEORETICAL DESCRIPTIONS

In thermodynamics theory, an equilibrium state is assumed
for the reaction, which introduces the concept of tempera-
ture. The temperature affects the yield of fragment. With
high temperature, light particles like neutrons and protons
can escape from the binding of hot fragment. The formation
time of the final fragments, which correspond to the mea-
sured ones in experiments, is called the “chemical freeze-out”
(when the fragment ceases to emit light particles, like neu-
trons, protons or α, and the neutron and proton numbers do
not change anymore). In general, the yield of fragment in
heavy-ion collisions above the Fermi energy obeys an expo-
nential law. For example, in the grand-canonical ensembles
theory within the grand canonical limit, the yield of a frag-
ment with mass numbers A and neutron-excess I (I = N–Z
is the difference between the numbers of neutrons and pro-
tons) is written as [15, 16]

σ(I,A) = cAτ exp{[F (I, A) +Nµn + Zµp]/T}, (1)

where T is the temperature of the system. F (I, A) is the
free energy of the fragment which depends on T . µn(µp) is
the chemical potential of the neutrons (protons) in the equi-
librium system, which depends on the density and T of the
systems. In the isoscaling method [17, 18], the difference
between the µn(µp) of two reactions can be extracted from
the isotopic (isotonic) ratio

R(I, A)21 =
σ(I, A)2
σ(I, A)1

∝ exp{[N(µn2 − µn1) + Z(µp2 − µp1)]/T},
(2)
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with indices 1 and 2 denoting the reactions. In Eq. (2), the
T of the two reactions is assumed to be the same. For the
chemical freeze-out fragments this can be true since they both
have a very long evolution time. For the isotopic ratio,

lnR(I,A)21 = [N(µn2 − µn1) + Z(µp2 − µp1)]/T, (3)

Z does not change. The isotopic ratio shows scaling phenom-
ena obeying the linear function. The fitted slope is defined as
α ≡ (µn2 − µn1)/T . Similarly, for the isotonic ratio, N is
a constant. The isotonic ratio also shows scaling phenome-
na obeying the linear function. The fitted slope is defined as
β ≡ (µp2 − µp1)/T . α and β are used to extract the sym-
metry energy of the system. But the symmetry energy in the

isoscaling method is an indirect result obtained from the yield
of fragments.

Starting from Eq. (1), assuming the isobars differing 2 units
in I have the same temperature, the isobaric yield ratio can be
defined as

R(I + 2, I, A)21 =
σ(I + 2, A)

σ(I,A)

= exp{[F (I + 2, A)− F (I, A) + µn − µp]/T}.
(4)

To make cancellation of F , we adopt a reference reaction
system with similar measurements as the isoscaling method
does, and assume that the free energies of one fragment in the
two reactions are the same. Defined as the difference between
the IYRs of two reactions, the IBD is [11, 12]

∆ lnR(I + 2, I, A)21 = lnR2(I + 2, I, A)− lnR1(I + 2, I, A)

= [(µn2 − µn1)− (µp2 − µp1)]/T

= (∆µn21 −∆µp21)/T = ∆µ21/T.

(5)

The indices also denote the reaction systems. From the
definition of the isoscaling parameters, the following correla-
tion can be obtained

∆ lnR(I + 2, I, A)21 = α− β. (6)

Eq. (5) can also be written as

∆ lnR(I + 2, I, A)21 = [(µn2 − µp1)− (µn1 − µp1)]/T

= (∆µnp2 −∆µnp1)/T.
(7)

The chemical potentials of neutrons and protons are related
to the densities of neutrons (ρn) and protons (ρp) respective-
ly [14, 19]

µn/T = ln ρn, and µp/T = ln ρp, (8)

which result in α = ln ρn2 − ln ρn1 = ln(ρn2/ρn1), and
β = ln ρp2 − ln ρp1 = ln(ρp2/ρp1). We can also write the
relationship between the IBD results and the densities of the
reaction systems as [14]

∆ lnR(I + 2, I, A)21 = ln(ρn2/ρn1)− ln(ρp2/ρp1), (9)

∆ lnR(I + 2, I, A)21 = ln(ρn2/ρp2)− ln(ρn1/ρp1). (10)

Eqs. (9) and (10) are written according to Eqs. (5) and (7),
respectively. The densities of protons can be determined by
experimental measurement. Thus the relationships in Eqs.
(9) and (10) can be used to determine the neutron density of
the neutron-rich system. For example, if the reference re-
action system is a neutron-proton symmetric one, in which
ρn1 and ρp1 can be assumed to be the same and ρp2 is mea-
surable, ρn2 can be determined from the IBD results. In

Eq. (9), if ρp2 and ρp1 can be assumed to be the same (for
isotopic projectiles) and ρp1 ≈ ρn1, ∆R(I + 2, I, A)21 =
ln(ρn2/ρp1). Similarly, in Eq. (10), the reference reaction is
neutron-proton symmetric and ρp1 ≈ ρn1, by knowing ρp2,
∆R(I+2, I, A)21 = ln(ρn2/ρp2) and ρn2 can be determined
from the IBD.

III. RESULTS AND DISCUSSION

We will show the IBD results obtained from the measured
140A MeV 40,48Ca + 9Be and 58,64Ni + 9Be projectile frag-
mentation reactions [20]. These reactions were measured by
M. Mocko et al. at the National Superconducting Cyclotron
Laboratory (NSCL) at Michigan State University. The mea-
sured fragments range from Z = 5 to Zproj, which provides
high quality data for the test of the IBD methods. The IBD
results has been previously reported [11].

In Fig. 1, the results of the IBD and isoscaling methods
are re-plotted for comparison [11]. Four groups of reactions
are analyzed, the 48Ca/40Ca + 9Be and 64Ni/58Ni + 9Be reac-
tions of the isotopic projectiles, the 58Ni/40Ca + 9Be reactions
with the projectiles both being neutron-proton symmetric, and
the 48Ca/64Ni + 9Be reactions with the projectiles both being
neutron-rich. The reactions using the relative neutron-proton
symmetric projectile was set as the reference reaction denoted
by index 1. Theoretically, the relationship between the IBD
and isoscaling is described in Eq. (6). The fragment belongs
to one isotopic chain and one isotonic chain, thus it can be
related to α and β according to the respective isotopic and
isotonic ratio fitting. For the isobaric chains with I from −1
to 2, the IBD and isoscaling results were found to be similar
except for some fragments with a large A. The IBD results
were the same in the I = 0 and 1 isobaric chains for the
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Fig. 1. (Color online) The comparison between the IBD and isoscaling results (a re-plotted figure from Ref. [11]). The circles and squares
denote the IBD and isoscaling results, respectively. The lines are just for guiding the eyes to the plateaus in the IBD and isoscaling results.

48Ca/40Ca reactions. The same phenomena can be found in
the I = 1 and 2 isobaric chains for the 64Ni/58Ni reactions,
and the I = −1 isobaric chains for the 58Ni/40Ca reactions.

Fig. 2. (Color online) The asymmetry of the systems for obtaining
the IBD results. The labels on the circles denote the reactions used.

It was also found that the height of the IBD-plateaus in the
four groups were different, about 2, 1.4, 0.5 and 0.4, respec-
tively [11]. And the lengths of the plateaus are also different.
In the IBD of neutron-rich isobars, the plateau can disap-
pear [11–14]. The IBD results denote the difference between
the neutrons and protons for the two reactions according to
Eqs. (9) and (10). If the IBD results change very small, it
reflects that the difference between the densities of neutrons
and protons for the reactions are small. The increasing IBD
with A of the fragment indicates an enlarged difference be-
tween the densities of the neutrons and protons [21, 22]. Tak-
ing the IBD results for the 48Ca/40Ca reactions as an example,

ρp1 and ρn1 for 40Ca can be assumed to be the same, and as-
suming that ρp1 ≈ ρp2, ∆R(I + 2, I, A)21 = ln(ρn2/ρp1).
ρn2 of the 48Ca reaction can be determined from the IBD
results. For the 48Ca/40Ca reaction, ∆R(I + 2, I, A)21 =
ln(ρn2

ρp1
) = 2 which results in ρn2

ρp1
= 7.4. It is very large

compared to the isoscaling method. It should be noted that
48Ca has a much larger neutron excess than 40Ca, and α ∼
β, of which β cannot be omitted in Eq. (6). This makes
∆ lnR(I + 2, I, A)21 = 2α , which results in the overes-
timation of ρn2

ρp1
. Similar explanations can be found for the

other three reaction groups. It should be noted that the densi-
ties determined by the IBD results are for the time of freeze-
out, assuming thermal equilibrium. The relationship between
the density of the projectile and the system at the freeze-out
should be further studied in transport models.

The IBD-plateau was found to be sensitive to differences
between the densities of the reaction systems. The
asymmetry of these systems (N/Z)21 are calculated
and the results are plotted in Fig. 2. The asym-
metry of the reaction systems (N/Z)21 is defined as
[(Np+Nt)/(Zp+Zt)]2/[(Np+Nt)/(Zp+Zt)]1. From high to low,
(N/Z)21 is in the order of 48Ca/40Ca, 48Ca/58Ni, 64Ni/40Ca,
64Ni/58Ni, 48Ca/64Ni, and 58Ni/40Ca. The (N/Z)21 of the
48Ca/64Ni and 58Ni/40Ca reactions are very similar. In
Fig. 3(a), the IBD-results for the I = 0 isobaric chain are
re-plotted. From high to low, the IBD-plateau is in the order
of 48Ca/40Ca, 48Ca/58Ni, 64Ni/40Ca, 64Ni/58Ni, 58Ni/40Ca, and
48Ca/64Ni. The IBD-plateaus for the 58Ni/40Ca and 48Ca/64Ni
reactions are very similar. The order of the (N/Z)21 and
the IBD-plateau are consistent, except for the 58Ni/40Ca and
48Ca/64Ni reactions. The same phenomena can also found in
the IBD results for the I = 1 isobaric chain in the reactions
as plotted in Fig. 3(b).

To test the sensitivity of the IBD-plateau to the density
difference between the reactions, we calculate the fragment
yield in the 80A MeV 38-52Ca + 12C reactions (only the even-
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Fig. 3. (Color online) The IBD results for the I = 0 (a) and I = 1
(b) isobaric chain.

A calcium isotopes are used) by using a modified statistical
abrasion-ablation (SAA) model [6, 13, 14, 21–27]. The sta-
tistical abrasion-ablation model will not be described in this
work. Readers can refer to Refs. [21–27]. The fragments pro-
duced in the 40Ca + 12C reaction is set as reaction 1, which is
the reference reaction. The IBD results for the isobaric chains
from I = −1 to 2 are plotted in Fig. 4. Since the analyzed
fragments are the prefragments which are determined by the
neutron and proton densities, as well as the nucleus-nucleus
reaction cross sections, the yields of prefragments are sen-
sitive the density changes of the projectile [13]. It is found
that, as the projectile (XCa, with X denotes the mass num-
ber of projectile) becomes more neutron-rich, the IBD results

Fig. 4. (Color online) The IBD results for the prefragments calculat-
ed by using a modified statistical abrasion-ablation model.

Fig. 5. (Color online) The averaged value of IBD-plateaus for the
isobaric chains from I = −1 to 2. The inserted figure show the
difference between the neutron density distributions of XCa and 40Ca
with ∆ ln ρn = ln ρn (XCa)− ln ρn(40Ca).

increases regularly. The IBD obtained from the prefragments
are sensitive to the difference between the neutron density of
the XCa and 40Ca reactions if we assume that the proton den-
sities in XCa are the same or vary very little [13, 14].

We calculated the average values (< ∆µ/T >) of the IBD-
plateau for the isobars plotted in Fig. 4. The < ∆µ/T > are
plotted as a function of I in Fig. 5. It is shown that for the
relative symmetry fragments, < ∆µ/T > changes very small
with I . In the inserted figure of Fig. 5, the difference between
the neutron densities (∆ ln ρn) of XCa and 40Ca is plotted.
When r <∼ 2 fm, ∆ ln ρn are flat and change very small.
It has been illustrated that the yield of fragments with small
mass numbers are mostly produced in the central collisions
[21, 22, 26, 27]. The flat distribution of ∆ ln ρn between the
core part of the calcium isotopes can account for the phenom-
ena of the IBD-plateau. The enlarged ∆ ln ρn with r (r >∼ 2
fm for different calcium isotopes) can also account for the in-
creasing of ∆µ/T with A, as well as the disappearance of the
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IBD-plateau in the neutron-rich isobars [11–14].
From both the experiment results and the calculated results

by the statistical abrasion-ablation model [11–14], it is shown
that the IBD probe is sensitive to the density difference be-
tween reactions. The IBD probe provides a new method to
determine the neutron density in heavy-ion collisions. But
as we have noted, the density is for the time of the chemi-
cal freeze-out, assuming there is a thermal equilibrium in the
reaction. Actually, the process of the reaction is dynamic
and changes with reaction time. The IBD results should be
verified by a dynamic evolution process. Previously we have
reported the IBD result for the 58Ni + 12C reaction calculated
by the anti-symmetric molecular dynamical (AMD) model to
verify the sensitivity of the IBD to density [11]. In dynamical
model calculations, the evolution of the IBD results with time
can be studied. We have finished the calculations and the IBD
analysis of the 58,64Ni + 12C reactions and hope to report the
AMD results in near future to see the IBD for primary frag-
ments and fragments after the decay process. Moreover, the

Shannon information entropy uncertainty is introduced to ex-
plain the physical meaning of the IBD probe [28, 29]. In the
dynamical model, the construction of fragments are important
[30, 31], and at the same time the temperature for heavy frag-
ments should be carefully treated [32–39]. It is also suggested
that the IBD can be used to study the evolution of chemical
potential and the density of the reactions. We will also study
the evolution of the IBD results by using the AMD model.

IV. SUMMARY

In summary, the method of isobaric yield ratio difference
is explained in this work. The IBD method is a more direct
method than the isoscaling method to extract the symmetry
energy or density of nuclear matter in heavy-ion collisions. It
is proven that the IBD probe is sensitive to the difference be-
tween the densities of the reactions, and can be used to study
the neutron density of the reactions.
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