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Cluster structures in light unstable nuclei are discussed. The structures of neutron-rich Be isotopes are theo-
retically investigated and the molecular orbital bond structure and its role in the vanishing of the neutron magic
number N = 8 are discussed. The two-body cluster resonances in highly excited states of neutron-rich Li, Be
and B isotopes are predicted theoretically.
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I. INTRODUCTION

Historically, many cluster structures have been discovered
in light stable nuclei. More recently, various cluster structures
have also been reported in the sd-shell and pf -shell regions
of heavier nuclei and in unstable nuclei ([1–4] and references
therein). These findings indicate that cluster structures are
common over a wide region of the nuclear chart. If there is
no correlation between nucleons, all nucleons in a nucleus
behave as independent particles in a mean field. However, in
reality, because of the attractive nuclear force, the correlation
between nucleons occurs to form cluster cores at the nuclear
surface. This is the cluster core formation and regarded as
a kind of ground state correlation. In the cluster formation
at the nuclear surface, clusters largely overlap with the core
nucleus and the system still in a normal density state. In the
system with cluster cores, intercluster motion is easily activat-
ed by a small amount of energy. Then, the cluster structures
are spatially developed in excited states. This means that the
mean-field and cluster states coexist in the low-energy regions
of nuclear systems.

12C is a typical example of coexisting cluster and mean-
field features. The ground state of 12C is the mean-field state
dominated by the p3/2-shell closed configuration mixed with
the 3α cluster core structure. At around 100 MeV, all twelve
nucleons in the 12C nucleus can dissociate, and the system
evolves to a free nucleon gas state. At the low energy region
around 10 MeV, three α clusters develop spatially in excited
states of 12C. The energy of the 3α cluster excitation is much
smaller than that of the nucleon gas state, implying that the
mean-field and cluster states coexist in the low-energy levels
of 12C.

Recent studies have revealed further rich cluster phenome-
na also in unstable nuclei, in which valence nucleons play im-
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portant roles. When excess neutrons are added to the already-
clustered stable nuclei, the cluster structure weakens in some
cases. If the additional neutrons deform the neutron structure
the cluster structure can be further developed in neutron-rich
nuclei. In neutron-rich Be and Ne isotopes, the cluster de-
velopment is accompanied by the vanishing of the neutron
magic number. Moreover, in remarkably developed cluster
structures in Be and B isotopes, a new types of cluster struc-
ture called molecular orbital structure has been attributed to
the valence neutrons in the molecular orbitals surrounding the
2α and 16O+α cluster cores, respectively.

Furthermore, recent experimental and theoretical studies
have revealed new states of cluster resonances containing ex-
otic clusters in the highly excited states of various unstable
nuclei such as He+He cluster states in Be isotopes [2, 3, 5–
23], 10Be+α states in 14C [24–28], 14C+α states in 18O and
their mirror states [29–38], 18O+α states in 22Ne [36–43],
9Li+6He states in 15B [12], and 6He+t states in 9Li [44].

Cluster structures have also been reported in heavier mass
nuclei in the sd-shell and pf -shell regions. Examples are
28Si+α, 24Mg+α, 28Si+α, 36Ar+α, and 40Ca+α cluster states
in 28Si, 32S, 40Ca, and 44Ti, respectively. These cluster states
may coexist with different cluster channels such as 16O+12C,
16O+16O, 28Si+12C and 28Si+16O cluster structures in each
nucleus. These facts indicate that various cluster structures
appear over a wide region of the nuclear chart.

By theoretically investigating these cluster phenomena, we
aim to acquire a systematic understanding of nuclear systems
and investigate cluster phenomena in light nuclei with the an-
tisymmetrized molecular dynamics (AMD) method [3, 45].
The AMD model describes both the cluster and mean field
structures in general nuclei. One of the advantages of the
AMD model is that the cluster formation and breaking, as
well as the cluster excitation, can be described in the AMD
framework without assuming the existence of any clusters.
The AMD method is further explained in Ref. [3] and the ref-
erences therein.

This paper is organized as follows. Section II discusses
the cluster structures of Be isotopes obtained from the AMD
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calculation. The cluster resonances are discussed in Section
III. The paper concludes with a summary in Section IV.

II. CLUSTER STRUCTURES OF BE ISOTOPES

In Be isotopes, two α clusters are formed even in the low-
lying levels. In the case of 10Be, the ground state is the normal
state having a 2α cluster core structure. In the excited state,
the molecular orbital (MO) structure appears in the 0+2 state
at 6.18 MeV, in which valence neutrons occupy the longitudi-
nal molecular orbital, σ orbital, around the 2α core. The 0+2
state is the largely deformed state with the developed cluster
structure, and it constructs a rotational band. The candidates
of the band members, a 2+ state at 7.54 MeV and a 4+ state
at 10.2 MeV, have been reported experimentally [19, 20], We
call this MO structure in the 0+2 state the MO bond struc-
ture because two α clusters are bonded by valence neutrons
in the MO around the 2α core. Very recently, 6He+α cluster
resonances have also been reported at around Ex=10 MeV, a
slightly higher energy than that of the MO bond.

The cluster features of the MO bond structure and those
of the cluster resonance differ from each other. In the MO
bond structure, two valence neutrons move throughout the
system around 2 αs. By contrast, two valence neutrons in
the 6He+α cluster resonance are localized around one of the
two αs to form the 6He cluster which weakly couples to the
other α cluster. Thus, two kinds of cluster structure appear
in neutron-rich Be isotopes. One is the MO bond structure,
and the other is the cluster resonance. The former is a strong
coupling cluster structure, and the other is a weak coupling
cluster structure. Similar cluster structures have also been re-
ported in sd-shell nuclei such as 22Ne, for which the MO bond
structure with the 16O+α cluster core and the 18O+α cluster
resonances were predicted in excited states.

The picture of the MO structure proposed by Seya et al.
and von Oertzen et al. well describes the cluster structures of
low-lying states of Be isotopes [5, 6], and it is useful to under-
stand the vanishing of the neutron magic number N = 8 in
neutron-rich Be. In the neutron-rich Be, the many-body cor-
relation leads to the formation of two α cluster cores. In the
2α system, MOs of a normal π-type orbital and a higher nodal
σ orbital are constructed by the linear combination of the p-
orbit around each α cluster, and they are occupied by valence
neutrons. If the valence neutrons occupy the π orbital, they
retain two α clusters in an inner region to gain potential en-
ergy. On the other hand, if the valence neutrons occupy the
σ orbital, two α clusters are pushed outward, because the σ
orbital has two nodes along the α-α direction, thus gaining
kinetic energy as the α-α distance increases. This lowering
mechanism of the σ orbital derives the σ orbital configuration
into the lower energy region in the developed cluster system.
Consequently, the level inversion occurs between the normal
π orbital and the higher nodal σ orbital and the N = 8 magic
number breaks down in very neutron rich Be such as 11Be and
12Be. According to the AMD calculations, it is found that the
level inversion (i.e., the breaking of the neutron magic num-
ber N = 8) occurs in 12Be and 13Be as well as in 11Be. For

these nuclei, largely deformed ground states having the high-
ly developed clustering are obtained.

The theoretically predicted large deformation is consistent
with the experimental reports on the strong E2 transitions in
the ground band [46–48]. The breaking of the neutron magic-
ity in 12Be has been more directly evidenced by the intruder
configuration in the ground state measured by 1n-knockout
reactions, which has been experimentally observed [49, 50].
Moreover, the systematics of the charge radii of neutron-rich
Be, which have been recently measured precisely, indicate the
vanishing of the neutron magicity at N = 8. The charge ra-
dius is smallest in 10Be and it increases in 11Be and 12Be in
the chain of Be isotopes. This means that the N dependence
of the charge radii shows a kink, not at N = 8, but at N = 6.
This may indicate that the neutron magic number at N = 8
disappears or shifts to N = 6.

III. CLUSTER RESONANCES IN HIGHLY EXCITED
STATES OF NEUTRON-RICH NUCLEI

In highly excited states of neutron-rich Be isotopes, two-
body cluster resonances containing neutron-rich He, such
as 6He and 8He clusters, are expected to appear. For in-
stance, He+He resonances in 12Be have been observed in
6He+6He and 8He+4He break-up reactions [16, 17, 23]. Ac-
cording to recent experimental and theoretical studies of 10Be,
6He+4He cluster resonances appear a few MeV higher than
the 10Be(0+2 ) of the MO bond structure [51–53]. These weak-
ly coupling cluster states differ from the strongly coupling
cluster states of the MO bond structure as mentioned before.
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Fig. 1. Density distribution of 6He+6He, 6He+8He, and 6He+9Li
cluster states in 12Be, 14Be, and 15B. These states are obtained in
the energy region near the corresponding threshold energy with the
AMD+VAP calculation using the modified Volkov interaction sup-
plemented by the spin-orbit force [12].

Moreover, various cluster resonances containing exotic
clusters that are unstable nuclei themselves were theoretical-
ly predicted in neutron-rich nuclei. As an example, we ob-
tain the 6He and t cluster resonances in 9Li with the the-
oretical calculation. Also in 14Be and 15B, 8He+6He and
9Li+6He cluster structures were obtained in highly excited
states [12, 52] (see Fig. 1). These cluster resonances are ex-
pected in the energy region near the corresponding threshold
energy. Further experiments should search for those new clus-
ter resonances near or above the threshold energy in neutron-
rich nuclei.
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The systematic study of cluster structures of excited states
in unstable nuclei is requested to obtain a new energy rule for
cluster states in unstable nuclei as Ikeda’s threshold rule for
cluster states in stable nuclei [54].

IV. SUMMARY

Cluster structures in light unstable nuclei were discussed.
The structures of neutron-rich Be isotopes were theoretically
investigated and the molecular orbital bond structure and its
role in the vanishing of the neutron magic number N = 8
were discussed. The two-body cluster resonances were pre-
dicted in highly excited states of neutron-rich Li, Be and B
isotopes.

The systematic study of cluster structures has revealed that

cluster is one of the essential features of nuclear systems and
that cluster states and mean-field states coexist in low-energy
levels. The cluster feature is remarkable in particular in low-
density systems which are realized in excited states near the
threshold energy. This cluster enhancement in low density is
the common feature not only in nuclear structure but also in
heavy ion collision and infinite nuclear matter at finite tem-
perature as known in the phenomena of multifragmentation
and nuclear pasta formation in a neutron star.
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