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Variance analysis for passive neutron multiplicity counting∗
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Passive neutron multiplicity counting is widely used as a nondestructive assay technique to quantify mass of
plutonium material. One goal of this technique is to achieve good precision in a short measurement time. In
this paper, we describe a procedure to derive mass assay variance for multiplicity counting based on the three-
parameter model, and analytical equations are established using the measured neutron multiplicity distribution.
Monte Carlo simulations are performed to evaluate precision versus plutonium mass under a fixed measurement
time with the equations. Experimental data of seven weapons-grade plutonium samples are presented to test
the expected performance. This variance analysis has been used for the counter design and optimal gate-width
setting at Institute of Nuclear Physics and Chemistry.
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I. INTRODUCTION

The initial motivation of developing passive neutron mul-
tiplicity counting was accountability measurement of impure
plutonium in safeguards. It collects the time-correlated neu-
trons emitted from plutonium to extract the mass information,
which makes this technique as a nondestructive assay proce-
dure. Neither the container nor the sample itself can shield
the neutrons easily. This makes the technique extend to the
field of arms control and disarmament [1–8], where there is a
strong need of measuring the plutonium mass stored in sealed
packages.

Compared with destructive assay or calorimetry for pluto-
nium, neutron multiplicity counting is advantageous in that a
measurement of less than 30 min can be of a good precision.
After determining hardware performance of the counting sys-
tem, low assay variance is the most important criterion. Both
counter geometry arrangement and parameters setting in the
assay model determine the assay variance. In addition, sta-
tistical error of each measurement should be obtained to e-
valuate the confidence of assay result. A method for estimat-
ing the expected assay variance for a sample of known mass,
neutron multiplication, and (α, n) reaction rate has been de-

veloped by ENSSLIN, which is known as Figure of Merit
code [9]. However, to give the assay variance for unknown
samples is important, too. In this paper, we report a physics-
based variance analysis algorithm that needs no known pa-
rameters. Multiplicity equations of the three-parameter point
model for plutonium assay are introduced first. Then, we de-
scribe detailed process to establish the analytical expressions
for assay variance of multiplicity counting, using the mea-
sured neutron multiplicity distribution of unknown samples.
Finally, performance of this approach is checked by Monte
Carlo simulations and experimental data.

II. THREE-PARAMETER POINT MODEL

For a typical plutonium sample, the unknown parameters
include: (1) mass m, which is proportional to spontaneous
fission rate F of 240Pu; (2) neutron leakage multiplication
M ; and (3) ratio α of (α, n) reaction neutrons to sponta-
neous fission neutrons. The neutron multiplicity equations of
three-parameter point model provide a solution for the three
unknowns [10]:
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where, ε is neutron detection efficiency; fd is doubles gate
fraction; ft is triples gate fraction; νs1, νs2 and νs3 are three
moments of spontaneous fission neutron distribution; νi1, νi2
and νi3 are three moments of induced fission neutron distribu-
tion; and S, D and T , representing count rates of the singles,
doubles and triples, respectively, are three moments of mea-
sured neutron multiplicity distribution.

III. VARIANCE ANALYSIS MATHEMATICS

After a sample being placed and measured in detection
chamber, the multiplicity shift register can record the fore-
ground multiplicity distribution in the R+A gate and back-
ground distribution in the A gate. The first and second mea-
sured foreground moments, f1 and f2, and background mo-
ments b1 and b2 are
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, (4)
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where, f(i) and b(i) are neutrons detected and counted in
the gate interval after the predelay and long delay, respec-
tively, following any signal-triggered measured events; p(i)

is probability for detecting i neutrons; NR+A =
max∑
i=1

f(i) and

NA =
max∑
i=1

b(i) are total triggers of foreground and back-

ground, respectively.
From Eqs. (4)– (7), one has the following standard devia-

tion equations for f1, f2, b1 and b2
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where, σf(i) = [f(i)]1/2, σb(i) = [b(i)]1/2, σNR+A = (N
1/2
R+A)

and σNA = (NA)
1/2, and Poisson-distribution is assumed for

f(i), b(i), NR+A and NA.

Doubles and Triples count rates are determined by mo-
ments of multiplicity distribution in the foreground R+A gate
and background A gate as

D = S(f1 − b1), (12)

T = S[f2 − b2 − 2b1(f1 − b1)]/2, (13)

Using error transfer functions produce the following stan-
dard deviation equations for σS , σD and σT
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For plutonium sample with impurities that yields neutrons
from (a, n) reactions, a solution of M is derived by eliminat-
ing F and a from the three-parameter model

a+ bM + cM2 +M3 = 0, (17)

where

a =
−6Tνs2(νi1 − 1)

ε2ftS(νs2νi3 − νs3νi2)
,
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εfdS(νs2νi3 − νs3νi2)
,

c =
6Dνs2νi2
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− 1

Eq. (17) is a function of just S,D and T , so partial derivatives
of M with respect to S, D and T are given by
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where, ∂a/∂S = −a/S, ∂b/∂S = −b/S, ∂c/∂S = −(c +
1)/S, ∂b/∂D = b/D, ∂c/∂D = (c + 1)/D, and ∂a/∂T =
a/T .

Standard deviation of M is determined by
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After M being determined, the final solution for F based
on the three-parameter model is:
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Then partial derivatives of F with respect to S, D and T
are given by:
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Standard deviation of F is finally determined by:
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For all plutonium samples, whether or not they have (α, n)
reactions, relative standard deviation of mass can be finally
expressed by:

σm = σF /F, (27)

IV. MONTE CARLO SIMULATION RESULTS

For testing the variance analysis procedure established in
this work, Monte Carlo simulations were carried out on the
new pile lab-neutron multiplicity counter (NPL-NMC) at In-
stitute of Nuclear Physics and Chemistry, CAEP. As shown
schematically in Fig. 1, it was built with a ring of 3He
tubes (32 four-atm tubes specifically), embedded in moder-
ator material (polyethylene) around the rectangular cavity,
with tube spacing of 55mm. The assay chamber is effectively
450mm(l) × 450mm(w) × 560mm(h). This geometry and
the 3He tubes ensure an efficiency of about 12% and a die-
away time of 60 µs.

Fig. 1. (Color online) 3D view of the NPL-NMC.

The Monte Carlo code MCNPX, version 2.5.0 [11], which
supports the spontaneous fission for plutonium and californi-
um, was used in the simulation. A time stamped list of neu-
trons captured in 3He tubes was recorded, and processed by
using a function for multiplicity shift register (MSR). In the
simulation, dead-time effect was not introduced into the chain
of time pluses. Thirty-two samples of pure metal plutonium
of 20–4000 g, in isotopic composition of 5% 240Pu and 95%
239Pu, were placed in the center of NPL-NMC and simulated
in a fixed counting time of 1000 s. Fig. 2 shows the assay
mass relative standard deviation (RSD) from counting statis-
tics versus the total mass of plutonium [12]. The multiplicity
RSD for NPL-NMC decreases first, and then increases with
plutonium mass. Physically speaking, at a low mass, RSD is
dominated by precision of the number of correlated neutrons
in the gate, which decreases with mass; while at a high mass,
RSD is dominated by precision of the number of accidental
neutrons in the gate, which increases with mass. The mini-
mum RSD position is about 200 g under the parameters in the
simulation.
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Fig. 2. Assay mass RSD(1 σ) vs total mass for pure plutonium metal
sample within 1000 s count time for NPL-NMC, Predelay = 3 µs,
Gate=80 µs, Longdelay=4ms.

TABLE 1. Plutonium compontes used for the experiment
No. Component shape Nominal mass /g
9#1 Hemispherical shell 462
9#2 Hemispherical shell 490
9#3 Hemispherical shell 965
9#4 Hemispherical shell 1 017
9#5 Spherical shell 2 364
9#6 Hemispherical shell 2 637
9#7 Hemispherical shell 3 739

V. EXPERIMENTAL RESULTS AND COMPARISONS

Measurements were done with seven weapons-grade plu-
tonium components, which were sealed respectively in stan-
dard containers as shown schematically in Fig. 1 [13]. A set
of integrated circuits on top of the counter were used to am-
plify the output signals of 3He tubes. One integrated circuit
processing the input analog signals from four 3He tubes. A
lift platform was used for position adjustment of the standard
container. Each component was placed into the center of the
detection chamber for a long period of time measurement,
which was split up into a series of interval of 1000 s. Table 1
is the list of plutonium components used for the experiment.

For a given multiplicity counter, the counting precision re-
sulting from MSR analysis depends mostly on the gate width
setting. A gate of very short width shall compromise the pre-
cision because it misses signals and “sees” only a few coin-
cidence events, while a gate of large width shall compromise
the precision, because of the high level of random pile-up or
accidental coincidence events [14], hence the importance of
an optimum gate width to have the lowest RSD. Because the
assay mass RSD is determined directly by the doubles and
triples count rates, it is natural to calculate the minimum RSD
position for these two count rates. The predelay was set to

Fig. 3. (Color online) RSD(1 σ) of D and T vs gate width from
seven samples of plutonium components.

9 µs to reduce the deadtime and pulses pileup effects based
on speed of the integrated circuit. A measurement time of 3
hour was used for each sample. As shown in Fig. 3, the po-
sitions of minimum RSD are almost the same to doubles and
triples count rate for each component, in the gate-width range
of 30–90 µs. It means that the optimum gate-width setting has
a broad option, which can be 0.5–1.5 times the die-away time.
Finally, a gate of 60 µs is used for the NPL-NMC.

Because each measurement was split up into a number of
1000 s runs, the assay mass RSD can be acquired from the
measured scatter of repeated runs based on the standard statis-
tic theory, and the precision of the RSD is (2n)−1/2, where n
is the number of runs [9]. The assay mass RSD can be cal-
culated by the analysis model. The effect of counting dead
time, coming from singal processing electronics, the RSD is
not considered in the procedure described. However, from the
RSD measurement results with coincidence circuits, we can
be sure that the counting deadtime will not affect the RSD
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TABLE 2. Comparison of measured and caculated assay mass RSD

No. M na RSD(1 σ)/% Bias/%
Measured Cal. RSD Mass

9#1 1.154 23 2.46± 0.36 2.14 13 1.63
9#2 1.140 18 2.15± 0.36 2.09 3 2.01
9#3 1.446 56 1.85± 0.17 1.88 2 1.45
9#4 1.153 23 2.56± 0.38 2.63 3 2.11
9#5 1.189 25 3.28± 0.46 3.97 21 2.32
9#6 1.497 60 1.86± 0.17 2.13 15 1.90
9#7 2.098 22 1.97± 0.30 2.40 22 1.84
a n, number of 1000-second measurements.

greatly [15]. Background correction is not considered, either.
Being just 3 counts/s, it results in a negligible error. Table 2
shows the comparison of measured and calculated RSD for
the plutonium components.

VI. CONCLUSION

An alternative procedure with analytical equations on the
variance analysis has been estabilsihed based on the measured
neutron multiplicity distribution without any prior knowledge
of the sample. Simulation and experiment data show that it is
possible to calculate assay variance with this approach. In a
comparison of the measured and caculated RSDs, the max-
imum error is 22% while the minximum error is 2%. It is
considered to be to a tolerable error for giving a referecnce
confidence for the measured mass result. The most likely
source of the error is the assumption that the foreground neu-
tron multiplicity distribution is Poisson-distributed.

The approch descried in this paper has been used for the
thermal passive multiplicity counter design and parameter-
s setting in experimental assay at INPC. It also can be ex-
tended to other neutron counters, such as active multiplicity
counter for uranium measurement, fast neutron multiplicity
couner with scintillators.
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