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helical cone-beam CT∗
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In helical cone-beam computed tomography (CT), Feldkamp-Davis-Kress (FDK) based image reconstruction
algorithms are by far the most popular. However, artifacts are commonly met in the presence of lateral projec-
tion truncation. The reason is that the ramp filter is global. To restrain the truncation artifacts, an approximate
reconstruction formula is proposed based on the Derivative-Hilbert-Backprojection (DHB) framework. In the
method, the first order derivative filter is followed by the Hilbert transform. Since the filtered projection values
are almost zero by the first order derivative filter, the following Hilbert transform has little influence on the
projection values, even though the projections are laterally truncated. The proposed method has two main ad-
vantages. First, it has comparable computational efficiency and image quality as well as the conventional helical
FDK algorithm for non-truncated projections. The second advantage is that images can be reconstructed with
acceptable quality and much lower computational cost in comparison to the Laplace operator based algorithm
in cases with truncated projections. To point out the advantages of our method, simulations on the computer
and real data experiments on our laboratory industrial cone-beam CT are conducted. The simulated and ex-
perimental results demonstrate that the method is feasible for image reconstruction in the case of projection
truncation.
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I. INTRODUCTION

In the field of cone-beam computed tomography (CT), he-
lical scans have the virtue of higher scan speed and more u-
niform axial errors compared to the circular scan [1]. The
image reconstruction problem of the helical scan has been
well solved by means of approximate or exact algorithms [2–
4]. Among these image reconstruction methods, Wang et al.’s
method [2] (called the helical FDK method hereafter) is com-
putationally efficient and widely used in practice. However,
the method is only suitable in cases that the objects under in-
vestigation are surrounded by the field of view (FOV) defined
by the detector size, scan magnification and rotation axis lo-
cation. In other words, when the object exceeds the FOV, the
sampled projections are truncated and the method becomes
challenged. When the projections are truncated on both sides,
called the interior problem, the image reconstruction has been
proven to have no unique or unstable solutions [5]. If the he-
lical FDK method was employed to deal with the truncated
projections, the resulting reconstruction image quality will be
severely degraded by truncation artifacts [6].

With the development of a local reconstruction algorithm,
there are new solutions to the interior problem [7–15].
Of these solutions, the approximate truncation reconstruc-
tion computed tomography (ATRACT)-type algorithms re-
searched by Dennerlein et al.’s group are highly practical [10–
15]. Its main idea is to use a cascade of local and global filters
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to replace the ramp filter in the FDK-type algorithms [16, 17].
Thus, this kind of algorithm is expected to have the same ad-
vantages of high computational efficiency and low resource
demand as those of the FDK-type methods. Based on Den-
nerlein et al.’s work, Zou et al. [4] proposed a general Laplace
operator based reconstruction algorithm (LORA) for helical
scans recently (called the Laplace operator based method in
this paper), where the Laplace operator and 2D Radon based
filters are regarded as the local and global filters, respective-
ly. Although the method can provide better reconstruction
over the helical FDK algorithm for a truncated spiral cone
beam CT, the Radon based filter is quite time-consuming. In
fact, many improvements have been made on the computa-
tional efficiency since the publication of Dennerlein et al.’s
first work [11, 13, 15, 19]. Among these improvements re-
searches, Wang et al. [19] proposed to filter the projection
by the first order derivative and Hilbert filters, which can
be described as the Derivative-Hilbert-Backprojection (DHB)
framework. In terms of computational cost and image quality,
Wang et al.’s method is outstanding.

In this paper, a novel approximate reconstruction formula
based on Wang et al.’s result is proposed for truncated projec-
tions of helical cone-beam CT. The remainder of the paper is
organized as follows. The geometry of a helical scan is de-
scribed in section II. The theory of our method is introduced
in detail in section III. Section IV discusses the numerical
simulation and experimental results. Section V is Conclusion.

II. NOTATION AND BASIC DEFINITIONS

The helical scan geometry is illustrated in Fig. 1. With-
out loss of generality, the X-ray source and the flat panel
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detector are assumed to rotate around the imaging object
in the data acquisition of a helical scan. The actual posi-
tion of the source, which is parameterized by the azimuth
angle λ ∈ R , where R is the real number space, is de-
noted by ~r0(λ). Three coordinate systems are hereby in-
cluded in the geometry. The first one is the 3-dimensional
(3D) Cartesian coordinate system, Oxyz, which is fixed in
the helical scan. The second one is the rotational coordi-
nate system which is spanned by ~eu(λ) = (− sinλ, cosλ, 0),
~eν(λ = (0, 0, 1) and ~ew(λ) = (cosλ, sinλ, 0). The third
one is the 2-dimensional (2D) Cartesian coordinate system
on the flat detector with u- and ν- axes. For a helical trajec-
tory with a constant pitch, h, and constant radius, R, one has
~r0(λ) = (R cosλ,R sinλ, hλ/(2π)). The pitch is defined as
the distance in the z-direction of two points on the helix that
are exactly one turn apart. The flat panel detector is arranged
to be parallel to the vectors ~eu(λ) and ~eν(λ), and orthogonal
to the vector ~ew(λ). The distance from the source to the flat
panel detector is D. R represents the distance between the
source and the rotation axis. The FOV of helical cone-beam
CT is a bounding cylinder C.

It is assumed that the spatial distribution of the X-ray ab-
sorption coefficient of imaging object is a compact function
denoted by f(~r), which is bounded by Ω. The projection of
object f(~r) onto the flat panel detector is

g(λ, u, ν) =

∫
R

(
f(~r0(λ) + ~θt)

)
dt. (1)

The direction of the X-ray given by the parameters λ, u and
ν is defined by

~θ =
u~eu(λ) + ν~eν(λ)−D~ew(λ)√

u2 + ν2 +D2
, (2)

where the coordinate (u, ν) on the intersection where the X-
ray passing through ~r = (x, y, z) hits the detector can be
computed with

u =
~r · ~eu(λ)

R− ~r · ~ew(λ)
D and ν =

~r · ~eν(λ)

R− ~r · ~ew(λ)
D. (3)

If the object f(~r) cannot be laterally surrounded by the
FOV of a helical scan, i.e. Ω cannot be contained by C, the
captured projection is laterally truncated.

III. THEORY

To obtain better image quality from transversely truncated
projections in a helical trajectory, a novel reconstruction al-
gorithm is proposed based on Wang et al.’s work. The new
reconstruction formula can be written as

f(~r) =
1

4π

∫ θ+π

θ−π

RD

[R− ~r · ~ew(λ)]
2

[∫ ∞
−∞

hH(u− u′) ∂
∂u

[
D√

D2 + u2 + ν2
g(λ, u, ν)

]
du′
]

dλ, (4)

where θ = 2πz/h. Formula (4) can be implemented by the
following four steps.

Step 1. Weighing the projection data

g1(λ, u, ν) =
D√

D2 + u2 + ν2
g(λ, u, ν), (5)

where g(λ, u, ν) is the projection at a view of λ and (u, ν) is
a coordinate of a detector pixel.

Step 2. First order derivation of the weighted projection
with respect to u

g2(λ, u, ν) =
∂

∂u
g1(λ, u, ν). (6)

Step 3. Hilbert filtering of g2(λ, u, ν) row by row

g3(λ, u, ν) =
1

2π
g2(λ, u, ν) ∗ hH(u), (7)

where hH = 1/(πu) is the Hilbert transform kernel and the
symbol ∗ signifies a convolution operation.

Step 4. Back-projecting the filtered projections onto the
3D volume

f(~r) =
1

2

∫ θ+π

θ−π

RD

[R− ~r · ~ew(λ)]
2 g3(λ, u, ν)dλ. (8)

Fig. 1. The geometry of helical cone-beam CT.

Mathematically, formula (4) is equivalent to formula (10)
in reference [2]. In the helical FDK algorithm, the filtration
kernel |ω| is ramp-like in the frequency domain.

In our method, the ramp filter is replaced by a cascade of
first order derivative and Hilbert operators. Hence, the pro-
posed reconstruction method has the same characteristics as
the helical FDK algorithm for global reconstruction. To ob-
tain the correct filtered result, the acquired projection must
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Fig. 2. The upper-left image (a) is the non-truncated 2D Shepp-Logan phantom. The following three images [(b),(c),(d)] are filtered results
using the helical FDK, Zou et al.’s method and the proposed method. The display window of the filtered results is [–0.04, 0.05]. The rightmost
image (e) illustrates the profiles of the middle row data of the three filtered images.

Fig. 3. The leftmost image is the truncated 2D Shepp-Logan phantom. The following three images are filtered results using the helical FDK,
Zou et al.’s method and the proposed method. The display window of the filtered results is [–0.04, 0.05]. The rightmost image illustrates the
profiles of the middle row data of the three filtered images.

be complete because |ω| is global. When the projections
are transversely truncated, the filtered values are not equal to
those from non-truncated projections. As a result, truncation
artifacts resulting from projection truncation arise in the re-
construction image. However, the filtered projection values,
g2(λ, u, ν), by the first order derivative operator are close to
zeroes in most regions. Even if the following Hilbert filter
is still global, the final filtered errors can be significantly re-
duced in comparison to the helical FDK algorithm.

Different from our method, Zou et al.’ method utilized the
Laplace operator and 2D Radon based filters [18]. When the
weighted projection gZou1 (λ, u, ν) is available, Zou et al. per-

formed the Laplace operator based filtering by

gZou2 (λ, u, ν) =

[
∂2

∂u2
+

∂2

∂ν2

]
gZou1 (λ, u, ν), (9)

and 2D Radon based filtering by

gZouF (λ, u, ν) = − 1

4π2

∫ π

0

| cosµ|gZou3 (λ, u, ν)dµ, (10)

where

gZou3 (λ, u∗, ν∗) =

∫
Ωλ

gZou2 (λ, u, ν)δ(u cosµ+ ν sinµ− s)dudµ, (11)
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Fig. 4. The images in the first column are slices of the phantom. The following column images from left to right are reconstructed from
non-truncated projections by use of the helical FDK algorithm, Zou et al.’s method and the proposed method, respectively. The images from
up to down are slices at z = 12.8mm, y = 12.8mm and x = 12.8mm, respectively. The display window is [0, 1].

is the Radon transform, in which s = u∗ cosµ+ ν∗ sinµ. In
the implementation of the 2D Radon based filter, discretions
of s and λ (denoted by ∆s and ∆λ, respectively) are critical
to the quality of the filtered projection. Obviously, the smaller
the values of ∆s and ∆λ are, the better the quality of filtered
projection can be achieved. Meanwhile, more computation
time is also demanded. In our following discussions, ∆s =
0.5 pixel and ∆λ = 0.5◦.

To compare the filtered results by the three reconstruc-
tion methods mentioned above, the non-truncated 2D Shepp-
Logan phantom with 512× 512 pixels and the truncated one
with 256× 512 pixels are generated and filtered, respective-
ly. The filtered results of the non-truncated phantom image
by the three methods are shown in Fig. 2. From the results,
we see that the filtered image using Zou et al.’s method has
a jagged shape. In comparison, the filtered result using our
method basically coincides with that using the ramp filter in
the helical FDK algorithm.

Also, the truncated 2D Shepp-Logan phantom is filtered by
the three kinds of filters and the results are shown in Fig. 3.
Because the phantom image is not complete, the filtered im-
age using the helical FDK algorithm deviates from the true
value especially at the truncated places. Like the results in the
first simulation, the filtered result using Zou et al.’s method
has a jagged shape. Meanwhile, the result using our method
coincides well with the true value.

It is worth noting that filtering one image with 512× 512
pixels by Zou et al.’s method consumes 25.609 s and 15.703 s
for one image with 256× 512 pixels. In contrast, our method
consumes 0.204 seconds and 0.109 seconds respectively, and
the helical FDK consumes 0.094 s and 0.046 s. From the
results above, we believe that our method has the advantages
of less time cost over Zou et al.’s method and higher quality
over the helical FDK algorithm for truncated projections.

In fact, the DHB based reconstruction method was pro-
posed long ago. At that time, the first order derivative of
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Fig. 5. The top image illustrates the profiles of middle row data of
slices at z = 12.8mm. The bottom image illustrates the profiles of
middle column data of slices at x = 12.8mm.

DHB was thought to be sensitive to noise and harmful to the
reconstruction image quality. Therefore, researchers and en-
gineers preferred the Filtration Back-projection (FBP) to the
DHB method. To implement the DHB based method in prac-
tice, projection preprocessing such as projection denoising is
conducted to restrain the noise of projection before image re-
construction in our implementation.

IV. EXPERIMENTS AND DISCUSSIONS

To verify the efficiency of the proposed method, numer-
ical simulations and real data experiments were conducted,
where the helical FDK algorithm, Zou et al.’s method, and
our method were all employed to deal with the acquired
projections. These algorithms were implemented on a HP
workstation with 32GB memory, Intel E5-2620 CPU, and
programmed with C++ language on Microsoft Visual Studio
2010.

Fig. 6. The left image in the first row is the slice of phantom. The
following images are reconstructed from truncated projections by
use of the helical FDK algorithm, Zou et al.’s method and the pro-
posed method, respectively. The display window is [0, 1]. The last
image illustrates the profiles of the middle row data of the three re-
construction images.

A. Simulated data

In the following experiment, we demonstrated the
efficiency of our method on simulated projection data from
the 3D Shepp-Logan phantom [20]. The 3D Shepp-Logan
phantom size was 25.6 mm× 25.6 mm× 25.6 mm. Image
reconstructions from non-truncated (Simulation 1) and trun-
cated projections (Simulation 2) are discussed, respectively.
In the Simulation 1, non-truncated projections along a helical
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Fig. 7. The left upper image is the photo of the car spark plug. The
right upper one is the 768th slice of the 3D volume along y-axis. The
bottom one is the 2400th slice along z-axis depicted by the white line
in the middle image. The display window is [0, 1].

trajectory were generated, in which the detailed simulation
parameters are shown in the second column of TABLE 1. In
Simulation 2, truncated projections along the same helical tra-
jectory were generated and the simulation parameters are il-
lustrated in the third column of TABLE 1. Because the width
of the detector is 256 pixels in the Simulation 2, the simulated
projections are laterally truncated.

In the Simulation 1, the reconstruction matrix was
512× 512× 512 and the voxel edge length was 0.05 mm a-
long each axis. The reconstruction images from the simu-
lated non-truncated projections are shown in Fig. 4. Fig. 5

TABLE 1. Parameters of numerical simulations
parameters Simulation 1 Simulation 2
source to 150mm 150mm
object distance
source to 600mm 600mm
detector distance
size of detector 256 pixel × 256 pixel 256 pixel × 512 pixel
size of detector cell 0.2mm × 0.2mm 0.2mm × 0.2mm
number of 360 360
projections per turn
pitch of helix 25mm 25mm
Number of turn 2 2

illustrates the profiles of middle row data of the first row in
Fig. 4. From the results, it was found that the three meth-
ods can provide high quality reconstruction images for non-
truncated projections. Because the filtered projection is rough
by the Laplace operator based method, the profile of the mid-
dle row data is jagged. By comparison, reconstruction image
quality using our method is slightly superior to that of Zou et
al.’s method. To analyze the reconstruction error quantitative-
ly, the root mean square errors (RMSEs) of the three results
relative to the phantom were calculated. The resulting RM-
SEs were 1.128× 10−4, 1.149× 10−4 and 1.147× 10−4,
respectively. Additionally, the consumed times for recon-
structing a 512× 512 pixel slice by the three methods was
recorded and is shown in TABLE 2. We can see that Zou et
al.’s method is the most time consuming and that the time for
our method is slightly longer than the helical FDK algorithm.
The reason is that 2D Radon based filtering is very computa-
tionally demanding, which has been stated in Section III.

In Simulation 2, the reconstruction matrix was
256× 256× 512 and the voxel edge length was 0.05 mm
along each axis. During the filtering process the mean value
of the truncated projection data was removed by Zou et al.’s
method and our method, as a result, an offset artifact or
bias-like artifact arose. For convenient comparison, the re-
construction images using the two methods were corrected by
scaling and offset corrections. The two correction techniques
can be found in reference [15]. The reconstruction images
from the simulated truncated projections are shown in Fig. 6.
From the results, one can find that the reconstruction image
using the helical FDK algorithm is severely contaminated by
truncation artifacts. Since the filtered projection values using
the Laplace operator based filter are closer to zero than those
using the first order derivative filter, the reconstruction image
quality on the edge is slightly better. To evaluate on the
quality of the reconstruction images quantitatively, signal-
to-noise ratio (SNR) was computed. The region of interest
(ROI) is depicted by the white circle in Fig. 6. The SNRs of
ROIs by the helical FDK algorithm, Zou et al.’s method, and
our method were 10.38, 19.54 and 21.18 dB, respectively.
We also recorded the computation time for reconstructing a
256× 256 pixel slice and the results are shown in TABLE 2.
The conclusions are similar to Simulation 1.
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Fig. 8. The top image is cut out from the middle image in Fig. 7. The following images from up to down are reconstructed from truncated
projections by means of the helical FDK algorithm, Zou et al.’s method and the proposed method.

TABLE 2. Calculation times of the three reconstruction algorithms
in seconds
Simulation The helical LORA The proposed

FDK algorithm method method
Simulation 1 64 9232 92
Simulation 2 38 5666 52

B. Real data

Real data experiments were conducted on our laboratory
industrial cone-beam CT, which consists of a micro-focus X-
ray source (FXT-225.48, Yxlon, Germany), a high-precision
manipulator and a flat panel detector with 2304× 3200 pix-
els (4030E, Varian, America). A car spark plug was scanned
along a helical trajectory. In the experiment, the source to ob-
ject distance was set to 125 mm and the source to detector
distance was 1000 mm, respectively. To obtain high qual-
ity reconstruction, the pitch of the helical scan was set to
36 mm. 360 projections with a resolution of 0.127 mm/pixel
from the car spark was sampled in one turn. The turn num-
ber of helical scan is 3, so 1080 projections are collected.
To avoid the geometry artifacts interference, the sampled
projections are firstly corrected using a practical geometric
calibration method [1]. It is worth noting that the collect-
ed projections are non-truncated since the true values from
car spark plug are unknown. For convenient comparison,
the helical FDK algorithm was employed to the reconstruct
the image from non-truncated projections and the reconstruc-
tion image was regarded as the true value. The reconstruct-

ed 3D volume consists of 1536× 1536× 5120 voxels with
0.018 mm× 0.018 mm× 0.018 mm per voxel. A photo of
the car spark plug and the reconstruction images are shown
in Fig. 7.

The performance of the three methods was evaluated on
truncated projections. To obtain the truncated projections, the
central 512 columns of all projections were cropped virtually.
Just as in the simulation process, the helical FDK algorithm,
Zou et al.’s method, and the proposed method were all em-
ployed to deal with the cropped projections. The reconstruc-
tion matrix was 512× 512× 5120 and the voxel size was
0.018 mm× 0.018 mm× 0.018 mm. The slices at y = 256
and z = 2400 are shown in Figs. 8 and 9, respectively. From
the results, we see that the reconstruction image from truncat-
ed projections using the helical FDK algorithm was severe-
ly influenced by truncation artifacts. However, Zou et al.’s
method and our method can significantly reduce the trunca-
tion artifacts and provide comparable image quality. Also, the
SNRs of ROIs using these three methods were 9.81, 14.06
and 23.06 dB, respectively. The ROI is depicted by the white
circle in Fig. 9. Similar to the conclusions in the simulations,
our method was still faster than Zou et al.’s method. For the
sake of brevity, comparison of the computational time is omit-
ted here.

V. CONCLUSION

For global tomography, the helical FDK algorithm is by far
the most popular one in helical scan reconstructions. How-
ever, the reconstruction image quality is always degraded by
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Fig. 9. The left image in the upper row is cut out from the rightmost image in Fig. 7. The following images are reconstructed by use of the
helical FDK algorithm, Zou et al.’s method and the proposed method, respectively. The display window is [0, 1]. The last image in the lower
row illustrates the profiles of the middle row data of the images above.

truncation artifacts in the presence of projection truncation. In
this paper, a novel approximate reconstruction formula based
upon DHB framework was proposed for helical interior cone-
beam CT. The method performed the ramp filtering operation
in the helical FDK algorithm by applying a cascade of first
order derivative filtering and Hilbert filtering. Because the
intermediate filtered projection values using the first order
derivative filter were close to zero, the final filtered results
were not significantly changed by the following Hilbert filter.
Theoretically, the method is identical to the helical FDK algo-
rithm for non-truncated cases. Accordingly, our method has

the same advantages, such as low resource demand, as the
helical FDK algorithm.

We also compared the method with the Laplace operator
based method proposed by Zou et al.. The experimental re-
sults showed that our method possessed the advantages of less
time cost and comparable image quality. Hence, our method
has a significant practical implication. Since the first order
derivative operation was included in our method, it may be
sensitive to noise in practice. However, this potential weak-
ness can be overcome by introducing a projection denoising
in practice, such as non-local means.
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