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Abstract The present paper discusses entropy generation

in fully developed turbulent flows through a subchannel,

arranged in square and triangle arrays. Entropy generation

is due to contribution of both heat transfer and pressure

drop. Our main objective is to study the effect of key

parameters such as spacer grid, fuel rod power distribution,

Reynolds number Re, dimensionless heat power x, length-
to-fuel-diameter ratio k, and pitch-to-diameter ratio n on

subchannel entropy generation. The analysis explicitly

shows the contribution of heat transfer and pressure drop to

the total entropy generation. An analytical formulation is

introduced to total entropy generation for situations with

uniform and sinusoidal rod power distribution. It is con-

cluded that power distribution affects entropy generation.

A smoother power profile leads to less entropy generation.

The entropy generation of square rod array bundles is more

efficient than that of triangular rod arrays, and spacer grids

generate more entropy.

Keywords Entropy generation � Rod bundles � Thermal–

hydraulics � Spacer grids

1 Introduction

High heat transfer performance is vital in many engi-

neering heat transfer applications such as heat exchangers

and nuclear power plants. The common methods to

increase the heat transfer rate in a thermal system (the

surface exchange or the increase in coolant velocity) may

lead to either an increase in thermal system dimensions, or

an increase in system pressure drop. For design of thermal

equipment, both heat transfer rate and pressure drop must

be considered.

Irreversibility in thermal equipment can be caused by

heat transfer between heated walls and the surrounding

coolant (of finite temperature gradient) and the fluid’s

viscous effect. Irreversibility causes generation of entropy

in thermodynamic systems. Irreversibilities, caused by heat

transfer and pressure drop, compete with each other and

attempt to reduce entropy generation associated with heat

transfer, and vice versa.

Because the entropy generation is a direct measure of

the irreversibilities associated with heat transfer and pres-

sure drop, the thermal system performance can be

improved by minimizing the total entropy generation of the

convective heat transfer process. Many authors have

focused on the entropy generation of a single-phase flow in

various ducts. Bejan [1] proposed an optimum Reynolds

number for pipe flow leading to the minimum entropy

generation rate under fixed heat duty and flow rate and

reviewed on the thermodynamic optimization (or entropy

generation minimization) of flow geometry in single-phase

engineering flow systems [2]. Sarangi and Chowdhury [3]

analysed entropy generation in a counter flow heat

exchanger and derived expressions in terms of non-di-

mensional parameters. The thermodynamic optimization
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method for tree-shaped flow geometries during single-

phase flow was proposed by Zimparov et al. [4], by

assuming a laminar and fully developed flow and devel-

oping analytical equations to determine the entropy gen-

eration in these geometries. Sahin [5–7] analysed the

entropy generation in both laminar and turbulent single-

phase fluid flows through a duct with a constant heat flux

condition and investigated the entropy generation for a

fully developed turbulent fluid flow in a smooth duct

subjected to constant wall temperature. Temperature

dependence of the viscosity was taken into consideration in

the analysis. The ratio of the pumping power to the total

heat flux decreased considerably when fluid was heated and

the entropy generation per unit heat flux reached a mini-

mum along the duct length for viscous fluids.

Jankowski [8] presented a method to minimize entropy

generation by adjusting the duct’s cross section to control

the competing fluid flow and heat transfer irreversibilities,

so as to minimize the total entropy generation rate. Given

the flow rate, heat transfer rate, available cross-sectional

area, and the fluid properties, a general design correlation

was proposed to determine the optimal shape of a duct in a

single-phase condition. Jarungthammachote [9] analysed

entropy generation of a fully developed single-phase lam-

inar flow in a hexagonal duct at constant heat flux. Water

and engine oil were used to study the fluid effect on the

entropy generation. The aspect ratio of a hexagonal duct

was investigated to show its effect on the entropy genera-

tion. The entropy generations calculated with ducts, of

different cross sections, but in the same hydraulic diameter

and cross-sectional area, showed that the rectangular duct

was of the highest entropy generation, while the circular

was of the least. Other authors developed theories on

entropy generation for two-phase flow in ducts [10–13].

Entropy generation approach has been used in the

nuclear reactor technology. Talebi [14] studied effects of

thermal hydraulic on entropy generation in a vertical

boiling channel using drift flux void fraction model and

found that power distribution affected directly total entropy

generation for uniform distribution. Goudarzi and Talebi

[15, 16] minimized entropy generation for both single and

two phase of natural circulation loops. Using the second

law of thermodynamic analysis for a fuel element, Poddar

et al. [17] found optimum points for different wall heat

fluxes in low Reynolds number. In their study on applica-

bility of entropy generation minimization for various

thermodynamic processes, Cheng and Liang [18] reported

that entropy generation minimization led to maximum

output power. Poddar et al. [19] studied a entropy gener-

ation in a rod bundle and investigated geometrical effects

on thermodynamic performance of a rod bundle.

The effect of spacer grids and fuel rod power distribu-

tion has not been investigated yet. Spacer grids are fixed in

several positions along the fuel assembly axial length.

Spacer grids lead to more pressure drop along fuel

assembly and more heat removal by convection heat

transfer from cladding outer surface. Generally, entropy

generation analysis tool can determine the extent to which

each parameter affects the entropy generation and conse-

quently the efficiency of the system. Based on these pre-

dictions and economic issues, a final decision can be made

to choose the most appropriate design parameters.

The main objective of this paper is to investigate the

thermodynamic performance of a subchannel with triangle

and square arrangements. Entropy generation method is

used to study the effect of important parameters such as

spacer grid, fuel rod power distribution, Reynolds number

Re, dimensionless heat power x, length-to-fuel-diameter

ratio k, and pitch-to-diameter ratio n.

2 Mathematical model

A correlation for entropy generation in a subchannel

with square and triangle rod arrays was derived. As shown

in Fig. 1a, D is the rod diameter and P is centre-to-centre

distance of two adjacent rods. This study is concerned with

the entropy generation in the interior subchannels, but the

development of an expression for the side and corner

subchannels is analogous to the interior subchannel. Flow

conditions are representative of those of PWRs.

Assuming that the kinetic and potential energies are

much less than the thermal energy component, the steady-

state energy equation for the control volume with a length

of dz (Fig. 1b) is given by

dT=dz ¼ q00Pw= AGCp

� �
; ð1Þ

where T is the coolant temperature, Pw is the wetted

perimeter, A is the channel flow area, G is the mass flux, Cp

is the coolant specific heat at constant pressure, and q00 is
induced surface heat flux defined as

q00 ¼ Qsc= PwLð Þ for uniform heat flux, ð2aÞ

q00 ¼ pQsc= 2PwLð Þ sin px=Lð Þ for sinusoidal heat flux,
ð2bÞ

where Qsc is the heat added to the coolant flowing through

the subchannel, L is subchannel length, and x is axial dis-

tance from the geometrical beginning of the fuel rod. The

total entropy generation within the control volume shown

in Fig. 1b is:

dSep ¼ AGdS� q00Pwdz=Tw; ð3Þ

where dSep is the entropy generation and Tw is the local rod

surface temperature. dS is the change of specific entropy

for an incompressible fluid and can be calculated from:
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dI ¼ CpdT ¼ TdSþ dp=q; dS ¼ CpdT � dp=q
� �

=T ; ð4Þ

where I is the specific enthalpy, p is the pressure, and q is

the coolant density. The rod surface temperature is

obtained by:

Tw ¼ T þ DT; DT ¼ q00=h; h ¼ kNu=Dhy;
Dhy ¼ 4A=Pw;

Pw ¼ pP;A ¼ D2 � pP2=4 for square array;
Pw ¼ pP=2;

A ¼ 31=3D2=4� pP2=8 for triangle array,

ð5Þ

where h is the heat transfer coefficient, Nu is the Nusselt

number, k is the coolant thermal conductivity, and Dhy is

the channel hydraulic diameter. Thus, we have

dSep

dz
¼ q00PwDT

T2ð1þ DT=TÞ þ
GA

qT
� dp

dz
: ð6Þ

In Eq. (6), DT/T is very small and can be neglected. The

pressure gradient term can be given by:

� dp

dz
¼ fG2

2qDhy|fflffl{zfflffl}
Friction

þ qg|{z}
Gravity

þG2 dð1=qÞ
dz|{z}

Acceleration

; ð7Þ

where f is the friction factor. Acceleration pressure drop

has the lowest contribution to total pressure drop and can

be neglected. Substituting Eq. (7) into Eq. (6) and

simplifying:

dSep

dz
¼ 4q002A

T2Nuk|fflfflffl{zfflfflffl}
Heat transfer

þ fG3Pw

8q2
þ GAg

� �
1

T
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pressure drop

: ð8Þ

Geometry parameters in Eq. (8) are channel flow area

and wetted perimeter. Therefore, Eq. (8) can be used for

both square and triangle rod array subchannels using

Eq. (6) to determine the flow area and the wetted

perimeter.

Todreas and Kazimi [20] showed that friction factor and

Nusselt number for non-circular (especially rod array)

geometries could not be obtained by circular tube corre-

lations using the equivalent hydraulic diameter concept.

Also, for the fully developed turbulent flow through rod

bundles, Nu values may significantly deviate from the

circular geometry due to strong geometric non-uniformity

of the subchannels. For a bare rod bundle array, friction

factor (f) and Nusselt number are functions of Reynolds

number (Re) and pitch-to-diameter ratio (n = P/D) [14]:

f ¼ Cf=Re
0:18 ¼ aþ b n� 1ð Þ þ c n� 1ð Þ2

h i
=Re0:18; ð9Þ

Nu ¼ Nu1=U ¼ 0:023Re0:8Pr0:333= aþ bnþ cedðn�1Þ
h i

;

ð10Þ

where Cf is the rod bundle friction factor, Nu is the Nusselt

number for rod array geometry, Nu? is the Nusselt number

for a circular channel with an equivalent hydraulic diam-

eter, and Pr is the Prandtl number. Coefficients in Eqs. (9)

and (10) for fully developed turbulent flow through rect-

angle and triangle arrays are given in Table 1 [20].

For considering grid spacer effect on heat transfer,

Miller et al. [21] proposed the following correlation:

Nu=Nuin ¼ 1

þ465:4Re�0:5e2 exp �7:31�10�6Re1:15z=Dhy

� �
;

ð11Þ

where Nuin is Nusselt number for array geometry without

considering grid spacer effect, e = 0.233 is blockage ratio,

and z is the grid spacer distance.

For evaluation of total entropy generation in the sub-

channel, Eq. (8) must be integrated from subchannel inlet

into outlet. This can be done analytically for uniform heat

flux along the subchannel, following Jarungthammachote

[9]. For uniform and sinusoidal heat flux, the local coolant

temperature can be obtained by integrating Eq. (1) as

follows:

T ¼ Tin þ Qscz= ALGCp

� �
for uniform heat flux;

T ¼ Tin þ Qsc 1� cos pz=Lð Þ½ �= ALGCp

� �

for sinusoidal heat flux:

ð12Þ

Fig. 1 (Colour online)

Schematics of the rod arrays

(a) and a single square

subchannel (b)
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2.1 Uniform heat flux without spacer grid

By substituting Eq. (12) into Eq. (8) and integrating by

analytical method, the total entropy generation (Sgen) can

be obtained:

Sgen ¼
4AQ2

sc

LkNuP2
wTinTout

þ G3PwLf

8q2
þ GALg

� �
lnðTout=TinÞ
Tout � Tin

; ð13Þ

where L is the subchannel length, and the heat added to the

coolant flowing through the subchannel equals to the total

power of one rod (Qsc = QR) for square array, and

Qsc = QR/2 for triangle array.

2.2 Sinusoidal heat flux with spacer grid

In order to calculate entropy generation by heat transfer for

non-uniform (sinusoidal) heat flux, Eqs. (11) and (12) substi-

tute into Eq. (8) and then integrating by numerical methods.

For simplicity, integrating intervals are assumed to be equal to

distance of two consecutive spacer grid. It should be noted

because the dimension of each spacer grid is significantly lower

than the hydraulic diameter of channel, the heat transfer effect

of any spacer grid on the next one is not considered. Following

shah and Sekulic [22], entropy generation by fluid friction

under non-adiabatic conditions for a incompressible fluid can

be calculated. So the total entropy generation can be written:

Sgen ¼
Xn0�1

0

Zðnþ1Þdz

ndz

AB dz

2

64

3

75þ GADp
qTlm

; ð14Þ

where n0 = 15 is the number of spacer grids, n is the number

of axial increment, and dz is the distance between the spacer

grids. A, B, Dp, Tlm, and qmax are written as follows:

A ¼
4A q00max sinðpz=LÞ

� �2

kNu 1þ 465:4Re�0:5e2 exp �7:31� 10�6Re1:15ðz� ndzÞ=Dhy

� �� �

B ¼ Tin þ
q00maxPwL

pAGCp

1� cosðpz=LÞ½ �
� ��1

Dp ¼ fL

Dhy

þ n0Kf

� �
G2

2p
þ qgL

Tlm ¼ lnðTout=TinÞ
Tout � Tin

q00max ¼
pQsc

2PwL

where Kf = 0.242 is local loss coefficient for each spacer

grid [23].

It is often customary to use the entropy generation in

dimensionless form [9]: WT = Total entropy genera-

tion�(Tout - Tout)/Qsc, WH = Heat transfer entropy gener-

ation�(Tout - Tout)/Qsc, and WP = Pressure drop entropy

generation�(Tout - Tout)/Qsc; where WT, WH, and WP are

total, heat transfer, and pressure drop dimensionless

entropy generation, respectively.

We note that the present analysis is valid only for the

single-phase conditions. The minimum wall temperature

for bubble formation on the rod surface can be calculated

by [24]:

TONB ¼ Tsat þ 0:556
q00

1082 p1:156

� �0:463 p0:0234

; ð15Þ

where p is in bar and q00 is in W/m2. The thermal–hydraulic

and geometry design parameters of subchannels, shown in

Fig. 1, should be selected in order not to violate Eq. (15).

3 Results and discussion

Equations (13) and (14) were used to minimize entropy

generation in a vertical subchannel for both square and

triangle rod arrays. Effects of Reynolds number Re,

dimensionless heat power x, length-to-fuel-diameter ratio

k, and pitch-to-diameter ratio n, which are important for

thermal–hydraulic performance of a subchannel, were

analysed. Entropy generation in subchannels with square

and triangle arrays under different conditions was com-

pared for uniform heat flux without considering grid

spacers effects; and for sinusoidal heat flux with grid

spacers. Figure 2a, b shows dimensionless entropy gener-

ation verse Re for square and triangle subchannel, for the

entropy generation due to heat transfer (wH) and pressure

drop (wP), and total entropy generation (wT), under uniform

heat flux and without considering grid spacer influence;

while Fig. 2c, d represents for sinusoidal heat flux with

considering grid spacer effect. As illustrated, the wP con-

tribution to wT is rather insignificant, whereas the wH heat

transfer contributions dominate due to large value of heat

flux. Also Fig. 2 shows that for constant parameters, the

entropy generation decreases with increasing Re, as the

heat transfer coefficient increases with Re and this causes

Table 1 Coefficients in Eqs. (9) and (10) for rod bundle friction factor in square and triangle rod arrays

Rod arrays Equation (9), 1.0 B P/D B 1.1 Equation (9), 1.1\P/D B 1.5 Equation (10), 1.5\P/D B 1.9

A B C A B C A B C D

Square array 0.09423 0.5806 -1.239 0.1339 0.09059 -0.09956 0.9217 0.1478 -0.1130 -7

Triangle array 0.09378 1.398 -8.664 0.1458 0.03632 -0.03333 0.9090 0.0783 -0.1283 2.4
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the heat transfer to occur at a lower temperature difference

in the wall–bulk; hence the reduction in entropy genera-

tion. On the other side, the triangular subchannel produces

more entropy than the square one.

Figure 3 shows the entropy generation as a function of

Re for n values of 1.02–1.42. Higher n increases the sub-

channel mass flow rate and consequently improves the heat

transfer performance, hence the decrease in entropy gen-

eration. Figure 3 illustrates comparisons between total

entropy generation for square and triangle array subchan-

nels with a fixed heat power, inlet temperature, inlet mass

flux, and for various pitch-to-diameter ratios. The entropy

generation in triangle array is greater than square ones due

to changes in rod diameter. Therefore, in terms of entropy

generation, reactors with square fuel array (or PWRs) can

perform better than those with triangle fuel array (or

VVERs). Even spacer grids and sinusoidal power have

identical influence over triangular and square arrays. Fig-

ure 3c, d shows slight increase in entropy generation rel-

ative to Fig. 3a, b, respectively.

Figure 4 shows the entropy generation as a function of

dimensionless heat power x for the subchannel with square

and triangle rod arrays at L = 4 m, DF = 0.0095 m,

n = 1.32, P = 15.5 MPa, Tin = 286 �C, and

G = 3530 kg/m2s. The entropy generation w increases

with x. For a fixed heat transfer coefficient, increasing the

Fig. 2 Dimensionless entropy generation versus Re number for

square (a) and triangle (b) arrays in uniform power without spacer,

and for square (c) and triangle (d) arrays in sinusoidal power with

spacer. L = 4 m, DF = 0.0095 m, n = 1.32, P = 15.5 MPa,

Tin = 286 �C, and QR = 64.4 kW

Fig. 3 Dimensionless entropy generation versus Re at various n
ratios, for square (a) and triangle (b) arrays in uniform power without

spacer, and for square (c) and triangle (d) arrays in sinusoidal power

with spacer. L = 4 m, DF = 0.0095 m, P = 15.5 MPa, Tin = 286 �-
C, and G = 3530 kg/m2s

Fig. 4 Entropy generation versus dimensionless heat power x for

square (a) and triangle (b) arrays in uniform power without spacer,

and for square (c) and triangle (d) arrays in sinusoidal power with

spacer. L = 4 m, DF = 0.0095 m, n = 1.32, P = 15.5 MPa,

Tin = 286 �C, and G = 3530 kg/m2s
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heat power leads to a higher wall–bulk temperature dif-

ference, hence the increase in entropy generation.

According to Eq. (7), entropy generation number is pro-

portional to heat power, thus entropy generation increases.

As expected, friction pressure drop contributions are

insignificant.

Figure 5 represents dimensionless entropy generation w
as a function of the length-to-diameter ratio k, at n = 1.32,

P = 15.5 MPa, Tin = 286 �C, QR = 64.4 kW, and

G = 3530 kg/m2s. This constraint causes that length and

fuel rod diameter compensate each other, as an increase in

length means a relative decrease in fuel rod diameter, and a

greater k increases entropy generation. Comparing Fig. 5a

with Fig. 5c, the spacer grid leads to slight increase in

entropy generation. However, the role of sinusoidal heat

power cannot be ignored for entropy generation growth.

Again, applying spacer grid leads to more entropy gener-

ation for both triangle and square arrays (Fig. 5c, d).

The effects of channel power profile and spacer grid on

the total dimensionless entropy generation w as a function

of Re are demonstrated in Fig. 6. It can be seen that situ-

ations according to uniform power profile with and without

spacer grid generate approximately identical entropy for

lower Re, while for larger Re, uniform power with grid

spacer produces more entropy. This fact is extendible for

sinusoidal profile, situations with and without spacer grid

and close to Re = 5 9 105 have approximately identical

entropy generation, while after this critical value the case

with spacer grid begins to over taking. Also uniform power

distribution generates less entropy due to lower wall–bulk

temperature difference than the sinusoidal power

distribution.

Therefore, flattened neutronic flux and consequently

uniform power distribution in PWRs or VVERs cores not

only widens the safety margin but also leads to better

thermal–hydraulic performance associated with the entropy

generation.

4 Conclusion

Less entropy generation during cooling of a reactor core

leads to increased thermal–hydraulic efficiency. An ana-

lytical study has been performed to investigate the entropy

generation for a single-phase and fully developed turbulent

viscous flow in a single channel with square and triangle

arrays. An interior subchannel of a rod bundle is selected as

a representative of LWR for this analysis, and the selected

key thermal–hydraulic parameters and channel geometry

are in the range of PWRs. The effects of different param-

eters on the total entropy generation of subchannel are

studied. The important results derived from present paper

which give further insight into the area of entropy gener-

ation in a nuclear reactor core are the following:

1. The two most important phenomena that generate

entropy are heat transfer and pressure drop. The

contribution of pressure drop to total entropy genera-

tion is rather insignificant, compared to that of heat

transfer.

2. Increasing the pitch-to-diameter ratio would lead to

increase in subchannel mass flow rate and conse-

quently improvement in heat transfer performance,

causing the entropy generation number to decrease.

3. The entropy generation decreases with an increase in

the Reynolds number and vice versa.

4. For a fixed heat transfer coefficient increasing the heat

power would lead to heat being transferred at a higher

wall–bulk temperature difference, causing the entropy

generation to increase.

5. An increase in channel length or fuel rod diameter

leads to more entropy generation.

6. Entropy generation in reactors with triangle rod arrays

is greater than those with square arrays.

7. Power distribution profile has an important effect on

entropy generation in a reactor core. A smoother power

profile leads to lower entropy generation and better

thermal efficiency.

Fig. 5 Dimensionless entropy generation versus length-to-diameter

ratio k for square (a) and triangle (b) arrays in uniform power without

spacer, and for square (c) and triangle (d) arrays in sinusoidal power

with spacer. n = 1.32, P = 15.5 MPa, Tin = 286 �C, QR =

64.4 kW, and G = 3530 kg/m2s
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8. Spacer grids lead to increase in entropy generation in

the channel.

9. Generally, entropy generation analysis tool can help

designers to determine the extent to which each

parameter affects the entropy generation and conse-

quently the efficiency of the system. Based on these

predictions and economic issues, the designer will

make a final decision to choose the most appropriate

design parameters.
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