

Formulae for secondary electron yield from insulators and semiconductors

Ai-Gen Xie¹ · Min Lai¹ · Yu-Lin Chen¹ · Yu-Qing Xia¹

Received: 18 July 2016/Revised: 16 March 2017/Accepted: 22 April 2017/Published online: 6 September 2017 © Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2017

Abstract The processes and characteristics of secondary electron emission in insulators and semiconductors were studied, and the formulae for the maximum yield ($\delta_{\rm m}$) at $W_{\rm p0m} \leq 800$ eV and the secondary electron yield from insulators and semiconductors δ at the primary incident energy of 2 keV $\leq W_{\rm p0} < 10$ keV (δ_{2-10}) and 10 keV $\leq W_{\rm p0} \leq 100$ keV (δ_{10-100}) were deduced. The calculation results were compared with their corresponding experimental data. It is concluded that the deduced formulae can be used to calculate δ_{2-100} at $W_{\rm p0m} \leq 800$ eV.

Keywords Maximum secondary electron yield · Insulators and semiconductors · Secondary electron yield

1 Introduction

Secondary electron yields from different materials have interested many authors [1–4]. The secondary electron yield from insulators and semiconductors (δ) has found increasing applications in various areas, such as information technology, accelerator, scanning electron microscope, space flight, etc. [5–7] However, due to the high resistance of insulators and semiconductors, it is difficult to overcome their surface charge problem and measure the secondary

This work was supported by the National Natural Science Foundation of China (No. 11473049).

Ai-Gen Xie xagth@126.com electron yield [8–10]. Thus, available δ measurement data on insulators and semiconductors are not rich [11], especially in the incident energy range of 10–100 keV. Instead, many authors deduced formulae for key parameters to deduce δ of insulators and semiconductors [12–16]; But up to now, no formulae are available for the incident energy range of 2–10 keV (δ_{2-10}) and 10–100 keV (δ_{10-100}), and for $W_{\rm p0m}$, the incident energy at which δ is maximized ($\delta_{\rm m}$).

In this study, based on secondary electron emission processes in insulators and semiconductors and the formulae of δ_{2-10} , δ_{10-100} , and the maximum yield $\delta_{\rm m}$ at $W_{\rm p0m} \leq 800 \text{ eV}$ were deduced, involving the primary range of 10 keV $\leq W_{\rm p0} \leq 100$ keV (R_{10-100}) and 2 keV $\leq W_{\rm p0} < 10$ keV (R_{2-10}), the atomic number Z, and the high energy back-scattering coefficient *r*, apart from the different forms of secondary electron yield. For compounds, *Z* represents average atomic number of compounds, for example, Z = (20 + 8)/2 for CaO; and *r* represents back-scattering coefficient in the energy range of $W_{\rm p0} \geq 10$ keV.

2 Methods

2.1 Formula for δ_m

When electrons enter an insulator or semiconductor, secondary electrons are generated due to energy deposition of the primary electrons. Suppose that $N(x, W_p)$ is the number of secondary electrons produced at a depth x and primary electron energy of W_p , $N(x, W_p)$ is proportional to average loss of primary electrons per unit path length [17, 18]:

¹ School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

$$N(x, W_{\rm p}) = -\frac{\mathrm{d}W_{\rm p}}{\mathrm{d}S}\frac{1}{\varepsilon},\tag{1}$$

where W_p is primary energy at given depth in insulator or semiconductor, S is the path length of primary electrons, and ε is the average energy required to produce an internal secondary electron in an insulator or semiconductor.

The probability of an internal secondary electron reaching the surface of the insulator or semiconductor and passing over the surface barrier into vacuum can be written as [17, 18]:

$$f(x) = B \exp(-\alpha x), \tag{2}$$

where α is the absorption coefficient (and $1/\alpha$ is mean escape depth of secondary electrons), and *B* is the probability that an internal secondary electron escapes into vacuum upon reaching the surface of insulator or semiconductor.

From Eqs. (1) and (2), the yield due to primary electron can be written as [19]:

$$\delta_{\rm p} = \int_{0}^{R} N(x, W_{\rm p}) B \exp(-\alpha x) dx = -\frac{B}{\varepsilon} \int_{0}^{R} \frac{dW_{\rm p}}{dS} \exp(-\alpha x) dx.$$
(3)

According to Seiler [17], the maximum yield due to primary electron δ_{pm} is at $R = 2.3/\alpha$. Then, δ_{pm} can be written as [19]:

$$\delta_{\rm pm} = -\frac{B}{\varepsilon} \int_{0}^{\frac{2.3}{\alpha}} \frac{\mathrm{d}W_{\rm p}}{\mathrm{d}S} \exp(-\alpha x) \mathrm{d}x. \tag{4}$$

At $W_{p0m} \le 800 \text{ eV}$, the primary range R can be expressed as [20]:

$$R = 2 \times 10^{-9} A_{\alpha} W_{\rm p0m} / \left(\rho Z^{2/3}\right), \tag{5}$$

where ρ is material density, Z is atomic number, and A_{α} is atomic weight.

It can be assumed that the *R* at $W_{p0m} \le 800 \text{ eV}$ approximately equals the corresponding *S* for deducing the formula for δ_m . Thus, the energy loss per unit path length of the primary electrons at $W_{p0m} \le 800 \text{ eV}$ can be obtained by differentiating Eq. (5):

$$dW_{\rm p}/dS = -\rho Z^{2/3}/(2 \times 10^{-9} A_{\alpha}). \tag{6}$$

The δ_{pm} at $W_{p0m} \leq 800 \text{ eV}$ can be obtained by combining Eqs. (4) and (6):

$$\delta_{\rm pm} = (e^{2.3} - 1) B \rho Z^{2/3} / (2 \times 10^{-9} A_{\alpha} \alpha e^{2.3} \varepsilon).$$
 (7)

Relation between $\delta_{\rm m}$ and $\delta_{\rm pm}$ can be written as [21]:

$$\delta_{\rm m} = (1+1.26r)\delta_{\rm pm}.\tag{8}$$

For a given material, r is a constant [22]. The $\delta_{\rm m}$ can be obtained by combining Eqs. (7) and (8).

$$\delta_{\rm m} = (1+1.26r) \left({\rm e}^{2.3} - 1 \right) B \rho Z^{2/3} / \left(2 \times 10^{-9} \, A_{\alpha} \alpha {\rm e}^{2.3} \varepsilon \right)$$
(9)

2.2 Formula for δ_{10-100}

When primary electrons of 10 keV $\leq W_{p0} \leq$ 100 keV enter an insulator or semiconductor, R_{10-100} can be expressed as [20]

$$R_{10-100} = \frac{3.02 \times 10^{-11} A_{\alpha} W_{\rm p0}^{5/3}}{\rho Z^{8/9}}.$$
 (10)

It can be assumed that the R_{10-100} approximately equals the corresponding *S* for deducing the formula for δ_{10-100} . Thus, the following expression can be obtained by differentiating Eq. (10):

$$\frac{\mathrm{d}W_{\mathrm{p}}}{\mathrm{d}S} = -\frac{\rho Z^{8/9}}{5.03 \times 10^{-11} A_{\alpha} W_{\mathrm{p}}^{2/3}}.$$
(11)

The R_{10-100} is much larger than the maximum escape depth of secondary electrons *T*. For example, using Eq. (10) in Si (Z = 14, $\rho = 2.35$ g/cm³, and $A_{\alpha} = 28.1$) [13] at $W_{p0} = 10$ keV, we have $R_{10} = 16,055$ Å and T = 41-54 Å [23]. Thus, most of the primary energy is dissipated outside *T*, and the primary energy changes little inside *T*. Then, the energy loss of primary electrons in the energy range of 10 keV $\leq W_{p0} \leq 100$ keV per unit path length inside *T* can be approximately written as:

$$\frac{\mathrm{d}W_{\mathrm{p}}}{\mathrm{d}S} = -\frac{\rho Z^{8/9}}{5.03 \times 10^{-11} A_{\alpha} W_{\mathrm{p}0}^{2/3}}.$$
(12)

The δ_p in energy range of 10 keV $\leq W_{p0} \leq$ 100 keV can be obtained by combining Eqs. (3) and (12):

$$\delta_{\rm p} = \frac{B}{\varepsilon} \frac{\rho Z^{8/9}}{5.03 \times 10^{-11} A_{\alpha} W_{\rm p0}^{2/3}} \int_{0}^{R} \exp{(-\alpha x)} dx.$$
(13)

The R_{10-100} is much larger than *T*. The internal secondary electrons excited outside *T* cannot be emitted into vacuum [23], and *T* approximately equals $5/\alpha$ [23]. Thus, the definite integral [0, *R*] of Eq. (13) can be replaced with [0, $5/\alpha$]. Then, we have:

$$\delta_{\rm p} = \frac{({\rm e}^5 - 1)}{{\rm e}^5} \frac{B}{\alpha \varepsilon} \frac{\rho Z^{8/9}}{5.03 \times 10^{-11} A_{\alpha} W_{\rm p0}^{2/3}}.$$
 (14)

The δ is composed of δ_p and yield due to backscattered electrons δ_r , i.e. [24]

$$\delta = \delta_{\rm p} + \eta \delta_{\rm r} = (1 + \beta \eta) \delta_{\rm p}, \tag{15}$$

where β is the ratio of the mean secondary electron generation of one backscattered electron to that of one primary electron, and η is the back-scattering coefficient at W_{p0} . The β is greater than one [17], because the larger average emission angle of backscattered electrons is more favorable for the excitation of secondary electrons than the normal incidence of primary electrons, and the mean energy of backscattered electrons is less than W_{p0} .

According to theoretical and experimental results, for 10 keV $\leq W_{p0} \leq 100$ keV, β of metals is about 2 ($\beta_{10-100 \text{ metal}} \approx 2$) [25–28]. Because the average emission angle and mean energy of backscattered electrons from insulator or semiconductor are similar to those from metals [28, 29], we assume $\beta_{10-100 \text{ insulator}} \approx 2$ for 10 keV $\leq W_{p0} \leq 100$ keV. Therefore, we have:

$$\delta_{10-100} = (1+2r)\delta_{\rm p}.\tag{16}$$

The δ in energy range of 10 keV $\leq W_{p0} \leq$ 100 keV and $W_{p0m} \leq$ 800 eV can be obtained by combining Eqs. (9), (14) and (16)

$$\delta_{10-100} = \frac{43.9(1+2r)Z^{2/9}\delta_{\rm m}}{(1.1.26r)W_{\rm p0}^{2/3}}.$$
(17)

2.3 Formula for δ_{2-10}

When primary electrons of 2 keV $\leq W_{p0} < 10$ keV enter an insulator or semiconductor, R_{2-10} can be expressed as [20]:

$$R_{10-100} = \frac{1.03 \times 10^{-10} A_{\alpha} W_{\rm p0}^{3/2}}{\rho Z^{5/6}}.$$
(18)

It can be assumed that the R_{2-10} approximately equals the corresponding *S* during for deducing the formula for δ_{2-10} . Thus, we have Eq. (19):

$$\frac{\mathrm{d}W_{\mathrm{p}}}{\mathrm{d}S} = -\frac{\rho Z^{5/6}}{1.545 \times 10^{-10} A_{\alpha} W_{\mathrm{p}}^{1/2}}.$$
(19)

- 10

The R_{2-10} is much larger than *T* in energy range of $W_{p0m} < 800$ eV. For example, for Si (Z = 14, $\rho = 2.35$ g/ cm³, $A_{\alpha} = 28.1$) [13], at $W_{p0} = 2000$ eV, calculated with Eq. (18) we have $R_2 = 1222$ Å and T = 41-54 Å [23]. Thus, most of the primary energy is dissipated outside *T*; the primary energy only has a little change inside *T*. Then, the energy loss of primary electrons in the energy range of 2 keV $\leq W_{p0} < 10$ keV per unit path length inside *T* can be approximately written as:

$$\frac{\mathrm{d}W_{\mathrm{p}}}{\mathrm{d}S} = -\frac{\rho Z^{5/6}}{1.545 \times 10^{-10} A_{\alpha} W_{\mathrm{p}0}^{1/2}}.$$
(20)

Based on Eqs. (3) and (20), δ_p in energy range of $2 \text{ keV} \le W_{p0} < 10 \text{ keV}$ can be written as:

$$\delta_{\rm p} = \frac{B}{\varepsilon} \frac{\rho Z^{5/6}}{1.545 \times 10^{-10} A_{\alpha} W_{\rm p0}^{1/2}} \int_{0}^{\kappa} \exp\left(-\alpha x\right) \mathrm{d}x.$$
(21)

 R_{2-10} is much larger than *T* in energy range of $W_{\rm p0m} < 800$ eV, the internal secondary electrons excited outside *T* cannot be emitted into vacuum [23], and $T \approx 5/\alpha$ [23]. Thus, the definite integral [0, *R*] of Eq. (21) can be replaced with [0, $5/\alpha$], i.e.,

$$\delta_{\rm p} = \frac{({\rm e}^5 - 1)}{{\rm e}^5} \frac{B}{\alpha \varepsilon} \frac{\rho Z^{5/6}}{1.545 \times 10^{-10} A_{\alpha} W_{\rm p0}^{1/2}}.$$
 (22)

From Eqs. (8) and (15), we have $\delta_p/\delta_r = 1/(1.26r)$ for $W_{p0m} \le 800 \text{ eV}$, and from Eqs. (15) and (16), we have $\delta_p/\delta_r = 1/(2r)$ for 10 keV $\le W_{p0} \le 100$ keV. There is the tendency that η increases with W_{p0} for $W_{p0} \le 10$ keV [17], so there is the tendency that the δ_p/δ_r decreases with W_{p0} for $W_{p0} \le 10$ keV. Thus, the δ_p/δ_r ratio for 2 keV $\le W_{p0} < 10$ keV is in the range of [1/(1.26r), 1/(2r)], and we assume $\delta_p/\delta_r = 1/(1.5r)$ for 2 keV $\le W_{p0} < 10$ keV. Then, approximately, the δ for 2 keV $\le W_{p0} < 10$ keV can be expressed as:

$$\delta = (1+1.5r)\delta_{\rm p}.\tag{23}$$

Combining Eqs. (22) and (23), we have:

$$\delta_{\rm p} = \frac{({\rm e}^5 - 1)}{{\rm e}^5} \frac{B}{\alpha \varepsilon} \frac{\rho Z^{5/6} (1 + 1.5r)}{1.545 \times 10^{-10} A_\alpha W_{\rm p0}^{1/2}}.$$
 (24)

From Eqs. (9) and (24), the δ for 2 keV $\leq W_{p0} < 10$ - keV and $W_{p0m} \leq 800$ eV can be expressed as

$$\delta_{2-10} = \frac{14.29(1+1.5r)Z^{1/6}\delta_{\rm m}}{(1+1.26r)W_{\rm p0}^{1/2}}.$$
(25)

3 Results and discussion

Several approximations were made in deducing Eqs. (17) and (25). For example, for 2 keV $\leq W_{p0} < 10$ keV, energy loss of primary electron per unit path length inside *T* is from approximation. The energy loss decreases with W_p [4, 30]. The R_{2-10} is much larger than *T* for $W_{p0m} < 800$ eV. Thus, most of the primary energy is dissipated outside *T*; the primary energy changes little inside *T*. Therefore, the energy loss of primary electron can be calculated Eq. (20).

The δ_{10-100} and δ_{2-10} calculated with Eqs. (17) and (25), respectively, and the $\delta_{\rm m}$ [31, 32], *Z*, $W_{\rm p0}$ and *r* are given in Table 1. It can be seen that the calculation results of δ_{10-100} and δ_{2-10} agree well with the experimental data [31, 32].

Table 1 Comparison of the calculated δ for insulators and semiconductors with the experimental data

Materials [17, 21]	$\delta_{ m m}$	$W_{\rm p0}~({\rm keV})$	Calculated	Measured
Si $(Z = 14, r = 0.22)$	1.594 [<mark>31</mark>]	3.0 [31]	0.6723	0.769 [31]
		5.0 [31]	0.5207	0.49 [31]
		10 [31]	0.3056	0.3431 [31
		20 [31]	0.1925	0.216 [31]
		30 [31]	0.1439	0.138 [31]
Te (<i>Z</i> = 52, <i>r</i> = 0.41)	1.63 [31]	3.0 [31]	0.875	0.891 [<mark>31</mark>]
		5.0 [31]	0.6777	0.706 [31]
		10 [31]	0.4451	0.376 [<mark>31</mark>]
		20 [31]	0.2804	0.319 [<mark>31</mark>]
		30 [31]	0.214	0.174 [<mark>31</mark>]
	0.819 [11]	2.0 [11]	0.5384	0.495 [11]
		2.4 [11]	0.4915	0.418 [11]
Ge (<i>Z</i> = 32, <i>r</i> = 0.35)	1.142 [33]	2.0 [33]	0.688	0.696 [<mark>33</mark>]
		2.5 [33]	0.6154	0.54 [33]
		3.0 [33]	0.5618	0.53 [<mark>33</mark>]
		3.5 [33]	0.52	0.49 [33]
		4.0 [33]	0.4865	0.45 [33]
		4.5 [33]	0.4587	0.42 [33]
		5.0 [33]	0.4352	0.42 [33]
	0.743 [11]	2.0 [11]	0.4477	0.398 [11]
		3.0 [11]	0.3655	0.312 [11]
		4.0 [11]	0.3165	0.264 [11]
	1.62 [31]	5.0 [31]	0.6174	0.649 [31]
		20.0 [31]	0.2458	0.228 [31]
C ($Z = 6, r = 0.1$)	1.56 [31]	5.0 [31]	0.434	0.501 [31]
		20 [31]	0.1475	0.125 [31]
	1.136 [33]	2.0 [34]	0.5	0.527 [34]
		2.5 [34]	0.447	0.442 [34]
		3.0 [34]	0.408	0.4 [34]
		4.0 [34]	0.3533	0.316 [34]
		5.0 [34]	0.316	0.315 [34]
Indium tin oxide ($Z = 35.7, r = 0.36$)	2.52 [32]	2.0 [32]	1.5477	1.55 [31]
	[<mark></mark>]	3.0 [32]	1.2637	1.31 [32]
		5.0 [32]	0.9789	1.03 [32]
		7.0 [32]	0.8273	0.72 [32]
		10 [32]	0.6356	0.72 [32]
Indium zinc oxide ($Z = 29, r = 0.34$)	2.67 [32]	2.0 [32]	1.581	1.61 [32]
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	2.07 [32]	2.0 [32] 3.0 [32]		
			1.291 1.0	1.31 [32]
		5.0 [32]	0.845	1.02 [32]
		7.0 [32]		0.86 [32]
$Al_2O_3 \ (Z = 10, \ r = 0.18)$	6 02 [25]	10 [32]	0.6278	0.72 [32]
	6.23 [35]	2.0 [35]	3.025	3.83 [35]
$V \cap (7 - 123, r - 0.2)$	1 216 5261	3.0 [35]	2.47	2.44 [35]
$V_2O_5 (Z = 12.3, r = 0.2)$	1.216 [36]	2.01 [36]	0.6114	0.718 [36]
		2.54 [36]	0.5439	0.669 [36]
		3.044 [36]	0.4968	0.578 [36]
		3.572 [36]	0.4586	0.53 [36]
		4.034 [36]	0.4316	0.487 [36]
		5.056 [36]	0.3855	0.389 [36]
		5.571 [<mark>36</mark>]	0.367	0.347 [<mark>36</mark>]

So, Eq. (17) can be used to calculate δ_{10-100} , and the assumption that $\beta_{10-100 \text{ insulator}} \approx 2$ is reasonable. Also, for 2 keV $\leq W_{p0} < 10$ keV, Eq. (25) can be used to calculate δ_{2-10} and the assumption that the ratio of $\delta_{p}/\delta_{r} \approx 1/(1.5r)$ is reasonable.

The secondary electrons inside an insulator or semiconductor lose their energy in electron-electron collisions. Classically, only electrons with a kinetic energy $E > \chi_{real}$ can escape into vacuum [37], where χ_{real} is the real electron affinity and E is the energy measured from the bottom of conduction band of insulator and semiconductor. The minimum energy (for secondary electrons to escape) increases with the χ_{real} . The electrons that are created in shallower depths suffer fewer collisions and survive with sufficient energy to escape. In other words, volume in the insulator or semiconductor from which electrons escape decreases with increasing χ_{real} , and from this reduced volume only hot electrons emerge. As a result, a decrease in $1/\alpha$ is expected. With the increase of χ_{real} , the minimum energy for secondary electrons to escape increases, and B decreases. Therefore, from Eq. (9), $\delta_{\rm m}$ increases with decreasing $\chi_{\rm real}$.

For an insulator or semiconductor, different sample preparation techniques can lead to different χ_{real} , hence different δ_m , and different δ_{2-10} and δ_{10-100} , from Eqs. (17) and (25). These can be seen clearly for Te and Ge shown in Table 1 From above, it is concluded that the formulae for δ_{10-100} and δ_{2-10} can be used to calculate δ_{2-100} in the energy range of $W_{p0m} \leq 800 \text{ eV}$.

4 Conclusion

Based on the processes and characteristics of secondary electron emission, formulae for R_{10-100} and R_{2-10} and relationships among parameters of δ , the formulae for δ_{10-100} and δ_{2-10} were deduced, respectively. The δ_{10-100} calculated with the deduced formula for δ_{2-10} were compared with the deduced formula for δ_{2-10} were compared with their corresponding experimental data, and the results were analyzed. It is concluded that the deduced formulae for δ_{10-100} and δ_{2-10} can be used to calculate δ_{2-100} in the energy range of $W_{\text{p0m}} \leq 800 \text{ eV}$.

Different sample preparation of an insulator or semiconductor can lead to different χ_{real} , $1/\alpha$, B, δ_m , δ_{2-10} and δ_{10-100} .

References

 J. Wang, Y. Wang, Y.H. Xu et al., Research on the secondary electron yield of TiZrV-Pd thin film coatings. Vacuum 131, 81–88 (2016). doi:10.1016/j.vacuum.2016.05.001

- A.G. Xie, L. Wang, L.H. Mu, Formula for maximum secondary electron yield from metals. Surf. Rev. Lett. 22, 1550019 (2015). doi:10.1142/S0218625X15500195
- A.G. Xie, M. Lai, Y.L. Chen et al., Formulae for secondary electron yield and the ratio of the average number of secondary electrons generated by a single backscattered electron to that generated by a single primary electron. Indian J. Pure Appl. Phys. 53, 298–301 (2015)
- A.G. Xie, S.R. Xiao, L. Wang, Formulae for the secondary electron yield and total stopping power from 0.8 to 10 keV for metals. Pramana J. Phys. 86, 1127–1141 (2016). doi:10.1007/ s12043-015-1119-0
- S. Michizono, Secondary electron emission from alumina RF windows. IEEE Trans. Electr. Insul. 14, 583–592 (2007). doi:10. 1109/TDEI.2007.369517
- B.P. Song, W.W. Shen, H.B. Mu et al., Measurements of secondary electron emission from dielectric window materials. IEEE Trans. Plasma Sci. 41, 2117–2122 (2013). doi:10.1109/TPS.2013. 2265498
- R. Hoffmann, J.R. Dennison, Measurement methods of electron emission over a full range of sample charging. IEEE Trans. Plasma Sci. 40, 298–304 (2012). doi:10.1109/TPS.2011.2178251
- Y. Chen, J. Wu, M. Cho et al., Total electron emission yields of typical polymers. in *IEEE International Conference on Solid Dielectrics*, vol 4 (Bologna, 2013), pp. 752–755. Doi: 10.1109/ ICSD.2013.6619757
- K. Said, G. Damamme, A. Siahmed et al., Dependence of secondary electron emission on surface charging in sapphire and polycrystalline alumina: evaluation of the effective cross sections for recombination and trapping. Appl. Surf. Sci. 297, 45–51 (2014). doi:10.1016/j.apsusc.2014.01.070
- A. Chvyreva, A.J.M. Pemen, Experimental investigation of electron emission from dielectric surfaces due to primary electron beam: a review. IEEE Trans. Dielectr. Electr. Insul. 21, 2274–2282 (2014). doi:10.1109/TDEI.2014.004487
- 11. http://www.mc-set.com
- A.G. Xie, Q.F. Li, Y.Y. Chen et al., The formulae for parameters of the secondary electron yield of insulators from 10 to 30 keV. Mod. Phys. Lett. B 27, 1350238–1350248 (2013). doi:10.1142/ S0217984913502382
- A.G. Xie, S.R. Xiao, H.Y. Wu, Mean escape depth of secondary electrons emitted from semiconductors and insulators. Indian J. Phys. 87, 1093–1097 (2013). doi:10.1007/s12648-013-0355-8
- A.G. Xie, Y. Zhan, Z.Y. Gao et al., Formula for average energy required to produce a secondary electron in insulator. Chin. Phys. B 22, 057901–057903 (2013). doi:10.1088/1674-1056/22/5/ 057901
- A.G. Xie, S.R. Xiao, Y. Zhan et al., Formula for the probability of secondary electrons passing over the surface barrier into vacuum. Chin. Phys. Lett. 29, 117901–117904 (2012). doi:10.1088/0256-307X/29/11/117901
- R.C. Alig, Secondary-electron-escape probabilities. J. Appl. Phys. 49, 3476–3480 (1978)
- H. Seiler, Secondary electron emission in the scanning electron microscope. J. Appl. Phys. 54, R1–R18 (1983). doi:10.1063/1. 332840
- A.G. Xie, H.Y. Wu, J. Xu, Parameters of the secondary electron yield from metal. J. Korean Phys. Soc. 62, 725–730 (2013). doi:10.3938/jkps.62.725
- A.G. Xie, Z.H. Liu, Y.Q. Xia et al., Maximum secondary electron yield from semiconductors and insulators. Surf. Rev. Lett. 24, 1750045 (2017). doi:10.1142/S0218625X17500457
- K. Kanaya, H. Kawakatsu, Secondary electron emission due to primary and backscattered electrons. J. Phys. D Appl. Phys. 5, 1727–1742 (1972). doi:10.1088/0022-3727/5/9/330

- S. Ono, K. Kanaya, The energy dependence of secondary emission based on the range-energy retardation power formula. J. Phys. D Appl. Phys. **12**, 619–632 (1979). doi:10.1088/0022-3727/12/4/019
- 22. W Reuter, in *Proceedings of the 6th International Conference on X-ray Optics and Microanalysis* (University of Tokyo Press, Tokyo, 1972), p. 121
- H. Seiler, Some problems of secondary electron emission.
 Z. Angew. Phys. 22, 249–263 (1967)
- L. Reimer, H. Drescher, Secondary electron emission of 10–100 keV electrons from transparent films of Al and Au. J. Phys. D Appl. Phys. 10, 805–815 (1977). doi:10.1088/0022-3727/10/5/022
- H. Drescher, L. Reimer, H. Seidel, Rückstreukoeffizient und Sekundärelektronen-Ausbeute von 10–100 keV-Elektronen und Beziehungen zur Raster-Elektronenmikroskopie. Z. Angewl. Phys. 29, 331–336 (1970)
- I.M. Bronshtein, S.S. Denisov, Secondary electron emission of aluminum and nickel obliquely incident primary electrons. Sov. Phys. Solid State 9, 731–732 (1967)
- A.G. Xie, H.F. Zhao, T.B. Wang, Ratio of the mean secondary electron generation of backscattered electrons to primary electrons at high electron energy. Nucl. Instrum. Methods Phys. Res., Sect. B 268, 687–689 (2010). doi:10.1016/j.nimb.2009.12.026
- 28. A.G. Xie, C.Y. Zhang, K. Zhong, Two contributions to the ratio of the mean secondary electron generation of backscattered

electrons to primary electrons at high electron energy. Mod. Phys. Lett. B **28**, 1450046 (2014). doi:10.1142/S0217984914500468

- 29. L. Reimer, Scanning electron microscopy: physics of image formation and microanalysis (Springer, Berlin, 1985), p. 135
- 30. http://physics.nist.gov/PhysRefData/Star/Text/appendix.html
- L. Reimer, C. Tolkamp, Measuring the backscattering coefficient and secondary electron yield inside a scanning electron microscope. Scanning 3, 35–39 (1980). doi:10.1002/sca.4950030105
- D.M. Suszcynsky, J.E. Borovsky, C.K. Goertz, Secondary-electron yields of solar-system ices. J. Geophys. Res. 97, 2611–2619 (1992). doi:10.1029/91JE02944
- J.B. Johnson, K.G. McKay, Secondary electron emission from Germanium. Phys. Rev. 93, 668–672 (1954). doi:10.1103/Phys Rev.93.668
- R. Böngeler, U. Golla, M. Kässens et al., Electron-specimen interactions in low-voltage scanning electron microscopy. Scanning 15, 1–18 (1993). doi:10.1002/sca.4950150102
- 35. P.H. Dawson, Secondary electron emission yields of some ceramics. J. Appl. Phys. **37**, 3644–3645 (1966)
- E.A. Flinn, Enhanced secondary electron emission yield from doped vanadate-phosphate glasses. J. Appl. Phys. 51, 3441–3443 (1980). doi:10.1063/1.326320
- 37. A. van der Ziel, *Solid State Physical Electronics*, 2nd edn. (Prentice-Hall, Englewood Cliffs, 1968), p. 172