
Design of a NIM-based DAQ system

Wen-Xiong Zhou1,2 • Yan-Yu Wang3 • Liang-Ming Pan1

Received: 21 September 2016 / Revised: 16 November 2016 / Accepted: 19 January 2017 / Published online: 6 September 2017

� Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature

Singapore Pte Ltd. 2017

Abstract In order to satisfy the requirements of beam

measurement in the heavy ion medical machine and other

small nuclear physics experiments, we designed and built a

nuclear instrumentation module-based data acquisition

system. This is composed of a set of functional modules

and a purpose-built bus. One of the modules operates as a

master, collecting data from the other slave modules. It

then sends the data to the back-end computer via Ethernet.

In addition to the hardware, dedicated software has been

designed and implemented. In this paper, we provide a

detailed description of the architecture of the system, the

data frame, and the software. The bus is the central part of

the system. It can transmit data from the slave modules to

the master at 33 MB/s. The frame used to transmit the data

also ensures its integrity and monitors the hardware

architecture. The client software is designed to process data

in real time and store data on a hard disk for later analysis.

Keywords DAQ system � Purpose-built bus � ARM �
FPGA � NIM

1 Introduction

Data acquisition (DAQ) is a key activity in science and

technology, particularly in nuclear physics experiments. In

our case, beam measurement in the heavy ion medical

machine (HIMM) built by the Institute of Modern Physics

in China [1–3]. The signal in this facility is first processed

using the nuclear instrumentation module (NIM) front-end

electronics. Then the DAQ system sends the data to the

back-end computer. If the measurement system is imple-

mented using the NIM system and the DAQ system is

implemented using VME eXtensions for Instrumentation

(VXI) or PCI eXtensions for Implementation (PXI), for

example [4–9], the overall system would be very complex.

Furthermore, commercial portable DAQ systems such as

the openDAQ [10], the ORTEC model 926, and the

ORTEC EASY-MCA-2K/8K do not have the capacity for

measuring enough parameters or provide the function of a

synchronous trigger for the whole system. Furthermore, in

some parts of the HIMM, space restrictions impose the

need for a compact measurement and detection system.

In order to overcome these problems, we developed a

NIM-based DAQ (NDAQ) system with a low-cost, com-

pact structure, and flexible architecture. In this system, the

measurement, control, and DAQ modules in the NIM crate

are connected through a purpose-built bus. The maximum

data transport speed of the bus is about 33 MB/s, which is

faster than the speed of the General Purpose Interface Bus

(GPIB) [11–13]. Due to the need for control of the bus, the

achieved speed of bus is less than 33 MB/s. The maximum

speed we have reached in a real experiment is about

4.8 MB/s. However, this is adequate for the data transport

speed in beam measurement and accelerator control
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applications. It is also faster than the speed of the General

Purpose Interface Bus (GPIB).

The ROOT data analysis framework is highly flexible

and stable. It is used in many projects, for example, the

pixel detector DAQ system for high energy physics (HEP),

the High Energy Spectroscopic System (HESS) DAQ

system and so on [14–16]. Hence, the ROOT framework is

well suited for the implementation of the client software for

the NDAQ. One version was created for the Linux oper-

ating system, and another convenient and flexible version

for Microsoft Windows has also been developed based on

Visual C??.

2 NDAQ hardware architecture

2.1 System architecture

Figure 1 shows the hardware architecture of the NDAQ

system [17–19]. All the modules within the system are

linked through the purpose-built bus. In the system, one of

the modules operates in master mode while the other

modules operate in slave mode. The master module reads

the data from the slave modules through the bus and sends

it to the NDAQ client software via Ethernet. The com-

munications are implemented using an Advanced Reduced

Instruction Set Computer (RISC) Machine (ARM) rather

than a field programmable gate array (FPGA) [18]. The

module can also operate independently as a minimal DAQ

system. In this situation, the module can read the data from

the front-end electronics (FEE) and send it to the NDAQ

client software directly.

The system is composed of various functional modules

including analog-to-digital converter (ADC), time-to-digi-

tal converter (TDC), scaler (SCA) module, and some

measurement and control modules. After completing the

design of the ADC modules, the TDC and SCA modules

were designed and tested. For these two modules, it was

only necessary to design the time measurement and scaler

functions because the same architecture as the bus is used

in these two systems and the stability of the bus has already

been tested. Thus ensuring correct communication in the

TDC and SCA modules. There are two types of ADC

module. One is implemented using the ARM (S3C6410)

and FPGA (EP3C25Q240) with four input channels. It can

operate in both master and slave modes with a switch to

change between operational modes. The other is designed

using a FPGA with eight input channels. It can only operate

in slave mode.

2.2 Purpose-built bus

The bus is used for data transfer between the master

module and the slave modules. It uses 40 signals as shown

in Table 1. The frequency of the synchronous clock is

16.5 MHz. As the width of the data bus is 2 bytes, the

maximum data transport speed of the bus is about 33 MB/s

calculated through the formula as follows:

S ¼ F �W :

where F is the frequency of the clock, W is the width of the

data bus, and S is the transfer speed of the bus. This speed

is used because it was originally designed to communicate

with the PCI bus in the former system, which had a clock

frequency of 16.5 MHz. The bus enables the number of

measurement parameters to be varied in accordance with

the requirements of a particular experiment, and the syn-

chronous trigger signal of the system is propagated from

the master module to the slave modules through the bus.

After power up, the master module will detect any slave

modules connected to it by means of the ADDR, AS, and

nASK bus signals. There are 255 slave module addresses.

After the AS has been set, the master module will wait for a

nASK signal. If the master module does not receive this

signal within 10 ls, the slave module at that address will

not be recorded. The longest duration of the detection

section is about 2.55 ms.

The slave modules can request the master module to

read their data by sending a nIRQ signal. After receiving a

nIRQ signal, the master module will read data from all the

Fig. 1 (Color online) NDAQ

hardware architecture
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slave modules in sequence. Additionally, the master mod-

ule can write data to the slave modules directly.

3 NDAQ software architecture

The NDAQ software consists of firmware, server soft-

ware (SS), and client software (CS). The firmware is used

to configure the FPGA. The server software, including the

driver software (DS) and the application software, is

implemented on the embedded Linux operating system on

the ARM. The client software is used to display spectral

data and store data to disk. The main functions of the

NDAQ software are as follows.

3.1 Requirement of the data transport

Since the volume of data typically encountered in small

nuclear physics experiments and beam measurements is not

large, the Ethernet has a maximum speed of 100 Mb/s.

Thus, the transport speed between the ARM and the FPGA

must be higher than this speed (about 12.5 MB/s), and the

speed of the bus must also be greater than this speed

because if the two speeds are less than the Ethernet speed,

it will lead to a data transport bottleneck in the NDAQ

system.

The communication methods between the FPGA and the

ARM can be divided into three types: serial communica-

tion, user-defined parallel communication, and standard

parallel communication. Standard parallel communication

is the fastest. Therefore, the FPGA is designed as a read-

only memory (ROM) device to utilize the memory bus

controller of the ARM [18], so that the transport speed can

satisfy the requirements of the system.

3.2 Dataflow

The dataflow, buffers, frame, and other architectural

features are also important for the DAQ system. Figure 2

shows the flow of data in the NDAQ system. The NDAQ

hardware consists of a master module and several slave

modules. If a module operates as a master, it can transmit

data to the NDAQ client software. If the module operates

as a slave, the ARM is not operational. Only the FPGA is

operational to obtain the data from the front-end electronics

(FEE) and send the data to the master module through the

bus.

The transmission of data can be divided into three

procedures:

1. The FPGA in the module gathers the data of the entire

system. This procedure is undertaken by FPGA only.

Two buffers are implemented in the FPGA. Buffer-A is

used to gather data from the FEE, while Buffer-B is

used to store the data from Buffer-A in all modules.

Buffer-B is only present in the master module. When

the data stored in Buffer-A of the slave modules

exceed the threshold, the FPGA sends an interrupt

signal to the master module through the bus. Then, the

master module reads the data from the corresponding

slave module via the bus.

2. The FPGA in the master module transports the data to

the ARM server. If the volume of data in Buffer-B of

the master module exceeds the threshold, the FPGA

sends an interrupt signal to the ARM. Then the

dedicated driver software reads the data from the

FPGA in response to the interrupt. When the volume of

data in the buffer of the driver (Buffer-C1 or Buffer-

C2) exceeds the threshold, the driver sends an interrupt

to the server software.

Table 1 Definition of the bus

signals
Name Number Function

DATA 16 Transmit data and register address

ADDR 8 Transmit module address

CLK 2 Synchronization clock signal driven by the master module

nRST 1 Reset signal driven by the master module

TRIGGER 1 Synchronization trigger signal driven by the master module

nIRQ 1 Interrupt from the slave modules

ICK 1 Interrupt response from the master module

AS 1 Module address bus select

nASK 1 Module address bus select response

DS 1 Data bus select

nDSK 1 Data bus response

RW 1 Read or write

AOD 1 Address or data
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3. The ARM in the master module transports data to the

NDAQ client software in one of the two ways. One

method is that the server software sends the data to the

client actively when the volume of data in the server’s

buffer software exceeds the threshold. The other

method is that the NDAQ client software requests

the data from the server software. In the second

method, the server software will force the driver

software to read data from the FPGA, and the FPGA in

the master module will also force the slave module to

send the data to the master module.

3.3 Data buffers

In a DAQ system, the data need to be acquired, pack-

aged, and transported. This can result in dead time between

events [20]. In order to reduce the dead time, five levels of

buffers (Buffer-A to Buffer-E) are used as shown in Fig. 2.

Double-buffers, i.e., Buffer-C1 and Buffer-C2, are collec-

tively referred to as ‘‘Buffer-C’’, so are Buffer-D1 and

Buffer-D2, and Buffer-E1 and Buffer-E2. The capacity and

type of the buffers are shown in Table 2. Buffer-A and

Buffer-B are first-in-first-out (FIFO) buffers implemented

in the FPGA. Buffer-C, Buffer-D, and Buffer-E are double-

buffers (DB) implemented using software on the ARM. All

the buffers have their own thresholds. The initial threshold

values are half of the corresponding buffer capacity.

An interrupt signal can be sent to the reader if the data

volume exceeds the threshold. When that happens, the data

are read out from the buffer and new data are written to the

FIFO or DB at the same time. This mechanism effectively

solves the problem of dead time but there are two new

problems.

1. If the event rate is very low, it will take a long time to

exceed the threshold of the five-level buffers. For

example, if the event rate is 0.1 kHz, it would take

Fig. 2 (Color online) NDAQ dataflow

Table 2 Capacity and type of

the buffers
Buffer-A Buffer-B Buffer-C Buffer-D Buffer-E

Capacity (KB) 0.5 16 40 120 480

Buffer type FIFO FIFO DB DB DB

Fig. 3 Data frame used in the DAQ system
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2,400 s to fill half of Buffer-E. To address this, an

event counter is incorporated in the FPGA. The trigger

threshold can be changed according to the event rate

measured by the counter. Then, the dead time between

two read interrupts can be shorted.

2. The system could lose the data stored in the buffers

when the acquisition is stopped. In an experiment that

has a low event rate, the lost data can be so significant

that the experimental result may be affected.

Thus, a mechanism is implemented to force the con-

troller to read out all the data in the buffers when it is

needed. This mechanism not only solves the data loss

problem, but can also be used to avoid long waiting times

between interrupts.

3.4 Data frames

In order to ensure correct data transmission, a data frame

is designed as shown in Fig. 3. The frame can be used to

identify the architecture of the hardware. The data are

packed before they are transported from Buffer-A to Buf-

fer-B as shown in Fig. 2. The function of each field is as

follows:

1. The start code marks the start of the frame. The

software can distinguish the frames from a TCP

package with the help of the start code. Since 0 is

not used in the data, it can be used as the start code.

2. The board address, board mode, board version, and

board type are used to transmit information about the

modules installed. The board version can identify the

data analysis method if the module is upgraded in the

future. The board type identifies the data analysis

method for different functional modules (TDC, ADC,

and SCA).

3. The frame length is the length of the entire frame,

which can be varied. That is useful when the event rate

changes. The frame length can also be varied when

different buffer thresholds are assigned. The relation-

ship between the frame lengths and the buffer thresh-

olds is shown in Table 3.

4. The frame sequence number is used to verify that data

have been transported correctly. Each frame has a

different number from 1 to 65,536. Thus, the client

software can tell whether any data have been lost.

3.5 DAQ client software

The client software (CS) is implemented using Visual

C?? on Microsoft Windows and using the ROOT

framework on Linux. The CS can automatically identify

Table 3 Relationship between frame lengths and the buffer thresholds

Event rate (KHz) Buffer-A (KB) Buffer-B (KB) Buffer-C (KB) Buffer-D (KB) Frame length (B)

B0.1 0.064 0.256 0.256 0.256 64

0.1–0.5 0.064 0.256 1 1 64

0.5–1 0.128 0.512 1 1 128

1–2 0.128 0.512 2 2 128

2–5 0.256 1 4 4 256

5–8 0.256 2 4 8 256

8–10 0.256 4 8 16 256

10–20 0.256 4 8 32 256

20–40 0.256 8 32 64 256

C40 0.256 8 80 120 256

Fig. 4 Architecture of the client software (CS)
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the hardware structure of the NDAQ system through the

data frame used in this system. The information obtained

from the data frame can be used to decode and analyze the

experimental data. Three threads are used to ensure the

stable and efficient operation of the CS as shown in Fig. 4.

The functions of the three threads are as follows:

1. The first thread is used to receive data from the server

software, store data on the disk, and unpack the data in

real time. The use of an independent thread helps to

avoid the loss of data packets when the data transport

speed is very high.

2. The second thread is used to process the spectrum in

real time with a range of processing methods, for

example, the background elimination method, the

smoothing method, and the peak searching method.

After processing, the spectrum is displayed in real

time. The processing methods are derived from a paper

by Miroslav Morhac and Vladislav Matousek [21].

3. The third thread is designed for human–computer

interaction. The data transmission, decoding, unpack-

ing, processing, and online display consume a large

amount of CPU time. This affects the human–com-

puter interaction. Thus, an independent thread is

implemented to solve this problem.

Figure 5 shows the NDAQ client software implemented

using Visual C?? on the Windows operating system. The

NDAQ client software can display up to eight spectra

simultaneously. In Fig. 5, four spectra are shown. The

device hardware information is also displayed to the left of

the spectra. A version of the client software based on

ROOT is also available for the Linux operating system.

Both versions have the same functionality.

4 Conclusion

This paper gives a detailed description of a

portable DAQ system for small particle and nuclear phy-

sics experiments. The main problems, encountered during

the design, and their solutions are introduced. The maxi-

mum data transmission speed of the purpose-built bus is

about 33 MB/s, which is sufficient for small particle and

nuclear physics experiments. The NDAQ client software

can operate on both Microsoft Windows and Linux oper-

ating systems with similar interfaces. All the operations of

the software are visual making it very easy for operators to

use. A ROOT-based NDAQ client software is provided as

an example. Thus, it is also convenient to customize for

developing special purpose DAQ software.
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