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Abstract Improving imaging quality of cone-beam CT

under large cone angle scan has been an important area of

CT imaging research. Considering the idea of conjugate

rays and making up missing data, we propose a three-di-

mensional (3D) weighting reconstruction algorithm for

cone-beam CT. The 3D weighting function is added in the

back-projection process to reduce the axial density drop

and improve the accuracy of FDK algorithm. Having a

simple structure, the algorithm can be implemented easily

without rebinning the native cone-beam data into cone-

parallel beam data. Performance of the algorithm is eval-

uated using two computer simulations and a real industrial

component, and the results show that the algorithm

achieves better performance in reduction of axial intensity

drop artifacts and has a wide range of application.

Keywords FDK algorithm � Missing data � Conjugate
rays � Three-dimensional weighting

1 Introduction

With notable features of high efficiency, high precision,

smaller size, smaller radiation dose and lower cost, cone-

beam computed tomography (CBCT) has been widely used

in medical imaging and industrial nondestructive testing

[1, 2]. Currently in CBCT systems of circular scanning

geometry, the FDK (Feldkamp–Davis–Kress) algorithm, a

straightforward generalization of the 2D fan-beam geom-

etry to 3D cone-beam geometry, is the most popular

method [3]. As an analytical algorithm, FDK algorithm is

advantageous in its simple structure, low calculation ex-

pense, easy implementation and accuracy [4, 5]. However,

as an inexact algorithm, FDK algorithm may introduce

significant artifacts in the images [6]. According to the data

sufficiency condition (DSC), the circular scanning geom-

etry, due to its own structure, always has the problem of a

donut-shaped area of missing data in Radon space [7], and

because of the data-insufficiency, FDK algorithm fails to

reconstruct the image accurately [8]. An increase in cone

angle in FDK algorithm can cause two kinds of problems:

high-frequency cone-beam artifacts and axial intensity

drop. The former makes the images deviate from the real

object greatly. Iterative algorithm may solve this image

quality issues at wider cone angles, but it cannot meet the

actual needs since large-scale matrix operations require a

large memory and a particularly time-consuming process

when reconstructing high-resolution images (such as 20483

or 40963, which is popular in industrial CT).

Many methods have been proposed to reduce cone-beam

artifacts. They can be classified into four categories:

1. Satisfying the DSC condition by turning the circular

trajectory into other scanning trajectories, such as
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‘circle ? circle’ [9], ‘circle ? line’ [10], ‘cir-

cle ? spiral’ [11];

2. Modifying FDK by rebinning the native cone-beam

data into cone-parallel beam data, such as T-FDK [12],

HT-FDK [13], CW-FDK [14], CB-FBP [15], ACE

[16, 17], C-FDK [18], BPW-FDK [19];

3. Adding a correction term in the FDK algorithm to get

the information contained in a circular cone-beam scan

but not utilized in the FDK algorithm based on

Grangeat formula [20]; and

4. Modifying FDK by adding a weighting function in the

reconstruction process, such as xFDK [21], FAFDK

[22], Weighted FDK [23, 24].

However, the Category 1 methods require a high pre-

cision trajectory and a large amount of computation, with

increased difficulty in mechanical design, hence the low

feasibility in practical applications. The Category 2 meth-

ods, in which the cone-beam has to be rebinned into cone-

parallel geometry, may cause spatial resolution loss espe-

cially when cone-beam data samples are sparse, and they

are useful just when the cone angle is small (B±5�)
[12–19, 25]. The Category 3 methods are more efficient

with less intensity drop than FDK, but need huge amount of

calculation [26–28]. The Category 4 methods have simple

and intuitive structures, with reduced cone-beam artifacts

(especially for intensity drop in the z axis) [21–24].

This paper presents a new algorithm based on FDK.

Based on the Tang’s idea to make up missing data in Radon

space, a 3D back-projection weighting function is intro-

duced into FDK to reduce the reconstruction artifacts [15].

Two phantoms and an industrial component are used to test

feasibility and effectiveness of the algorithm.

2 Materials and methods

2.1 Cone-beam scanning and missing data

The circular source trajectory of FDK is shown in Fig. 1

(we mainly discuss the flat-panel detector in this paper),

where the coordinate system is O-xyz; S is the X-ray

source; D is the virtual flat-panel detector; R is radius of the

circular source trajectory; and P(x, y, z) is a voxel on

reconstruction objective f(x, y, z) which can be determined

uniquely by the rotation angle h, fan angle c and cone angle
a. The FDK algorithm can be expressed as:

f x; y; zð Þ ¼
Z2p

0

dso2

Rþ x cos hþ y sin hð Þ2
� 1

2

� dsoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ u2 þ v2

p g h; u; vð Þ
� �

� h uð Þdh; ð1Þ

where g(h, u, v) is the projection data obtained fromD, (u, v)

is coordinate value of the detector system,� is the row-wise

1D convolution and h(u) is the ramp filtering kernel [3].

FDK algorithm achieves good results only under small

cone angle scan, but sometimes one has to reconstruct CT

images under large cone angle scan. For example, the

source-detector distance of micro-CT is much smaller than

that of normal CT (so as to obtain enough signals from the

detector of low power output), and this means a wider cone

angle scan. In this case, the cone-beam artifacts especially

for the intensity drop become even more significant with

the increase in cone angle.

An approach to reduce high-frequency cone-beam arti-

facts is the idea of conjugate rays (for any ray passing

through the voxel of P, there only exists a corresponding

conjugate ray, and the rotation angle between the direct ray

and the conjugate ray is always 180�). The inconsistency of

conjugate rays causes the cone-beam artifacts for FDK

algorithm, which treats each pair of conjugate rays equally

with a fixed weight of 0.5 [15]. To reduce cone-beam

artifacts, the ray being farther away from the source S and

passing through the voxel P(x, y, z) shall have greater

weight in the projection in a pair of conjugate rays (the

smaller the cone angle, the more reliable the projection),

and the other one has a smaller weight.

Another approach to reduce cone-beam artifacts is to

make up missing data (mainly for the axial intensity drop).

According to the DSC condition, as shown in Fig. 2, the

Radon space data (the first derivative of the Radon trans-

form) are not sufficient in the z direction for the circular

trajectory [28]. With the increase in z, the shaded area

increases gradually, forming a structure similar to a donut

[7]. However, FDK algorithm fills the shaded area with

exactly zeroes, which results in missing information.

For the problem of missing data in FDK, studies show

that deviation in the z direction can be described as a

hilltop-like function (in which the first derivative is an

increasing function) and it is feasible to compensate

missing data in the z direction using typical experiential

Fig. 1 (Color online) Schematic diagram of the native CB geometry
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functions, such as cosine function and Gaussian function

[23]. At this time, the weight in the back-projection process

is equivalent to an experiential hilltop-like function, rather

than a fixed weight of 0.5 in FDK.

3 3D weighted reconstruction under large cone
angle

The algorithm in Sect. 2.1 can be described from dif-

ferent aspects especially for the second and fourth methods.

Here, we take CB-FBP and Weighted FDK as examples.

From the idea of conjugate ray, the experiential 3D weight

of CB-FBP is:

wCB�FBP
3D a; zð Þ ¼ 1

1þ tan jajð Þ= tan jacjð Þð Þkjzj
; ð2Þ

and it meets the normalization condition:

wCB�FBP
3D a; zð Þ þ wCB�FBP

3D ac; zð Þ ¼ 1:0; ð3Þ

where a and ac are the cone angle corresponding to a direct

ray and the conjugate ray, respectively; and |k| is an

experiential function increasing with |z|. Starting from

making up missing data, the experiential 3D weight of

Weighted FDK is:

w
Weighted FDK
3D z; c1; c2ð Þ ¼ 1

2� cos c1z= R� c2rð Þ½ � ; ð4Þ

and it satisfies the inequality condition:

w
Weighted FDK
3D z; c1; c2ð Þ þ w

Weighted FDK
3D z; c1; c2ð Þ� 1:0; ð5Þ

where r = (x2 ? y2 ? z2)1/2, c1 and c2 are experiential

parameters provided for accelerating or decelerating the

z distance variable and the radial distance variable r,

respectively, thereby adjusting the shape of the weight

function [23]. For the hilltop-like description, the selection

of parameters c1 and c2 should satisfy mathematical con-

straint conditions:

0 � c1z= R� c2rð Þ � p=2: ð6Þ

However, mathematically, there is a big weakness in

Weighted FDK: There is no doubt than we can decrease the

axial intensity drop at z1 for normal detector once we have

chosen c1 and c2; however, there must be a z2 for larger

detector which ruins the mathematical constraint condi-

tions, leading to

lim
z!z�

2

w
Weighted FDK
3D zð Þ ! þ1 or

lim
z!zþ

2

w
Weighted FDK
3D zð Þ ! �1:

This means the gray values may be ?? or -? at z2 for

larger detector even if the gray value is close to zero (the

gray value will never be zero in simulations or practice),

will cause great distortion in the image. This forces us to

reselect the c1 and c2 when we scan the same object using

the same scanning parameters without any other change

(we just turn a normal detector into a larger detector). The

application of Weighted FDK is greatly restricted.

Both of CB-FBP and Weighted FDK can be expressed

in a general formula as follows:

f x; y; zð Þ ¼
Z2p

0

dso2

Rþ x cos hþ y sin hð Þ2
� w3D

� dsoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ u2 þ v2

p g h; u; vð Þ
� �

� h uð Þdh;

ð7Þ

where w3D is a 3D weighting function, and the method to

determine w3D differs from algorithm to algorithm, and so

do the starting idea.

Mathematically, we can analyze the differences between

the two algorithms and FDK. For FDK, the two weights’

sum of conjugate rays is always 1.0, and the two weights

are always 0.5, while for CB-FBP, the two weights are

always not the same in the non-central plane, though the

two weights’ sum of conjugate rays is always 1.0. On the

contrary, for Weighted FDK, the two weights of conjugate

rays are always the same, but their sum is always bigger

than 1.0 in the non-central plane. The differences in

mathematics may be their own advantages over FDK.

Since CB-FBP is designed against the high-frequency

cone-beam artifacts without any consideration of the axial

intensity drop (which is more significant), in contrast,

Weighted FDK (which introduces an ad hoc correction) is

more effective for axial intensity drop. The inequality

condition in Weighted FDK is believed to be more useful

for axial intensity drop than the normalization condition in

  Missing Radon data

Available Radon data

O

Z

D

Fig. 2 Radon missing data of circular scanning
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CB-FBP. However, CB-FBP is useful in small cone angle

only and may cause spatial resolution loss. Besides,

Weighted FDK does not have a widespread compatibility

and may not be applicable in practice especially for com-

plex objects since it has two parameters to adjust through

experience and a big weakness in mathematics [18, 29].

In this paper, we have a comprehensive consideration of

CB-FBP and Weighted FDK. Starting from CB-FBP

(conjugate rays) and Weighted FDK (making up missing

data), the cone-beam differs from fan-beam in the cone

angle itself (the cone angle may cause cone-beam artifacts)

and a 3D weighting function contacted with cone angle is

added in the back-projection process to decrease cone-

beam artifacts. Obviously, the modifying function should

meet six basic conditions:

1. The modifying weight should be related to cone angle

and symmetrical about the central plane;

2. The bigger the cone angle, the bigger the modifying

function value;

3. The new proposed algorithm should be equivalent to

FDK at the central plane (the cone angle is zero);

4. The weighting function should satisfy the inequality

condition of Weighted FDK in order to make up

missing data or reduce axial intensity drop;

5. The weighting function should be a hilltop-like

function just like Weighted FDK; and

6. The new proposed algorithm does not have big

weakness in mathematics.

According to the geometry in Fig. 3, the loss of

information has much to do with the increase in the cone

angle in the back-projection process, and the loss rate is

determined by the cone angle from the source S to the

voxel P1(x, y, z). We can add a weighting function in the

back-projection progress to make up the loss of

information.

Therefore, we define the 3D modifying weight as:

w3D z; t; sð Þ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p 	 tan2ðaÞ

q
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p 	 z2

Rþ sð Þ2þt2

s
;

p� 0;

ð8Þ

where t = ycosh - xsinh, s = xcosh ? ysinh and p is an

experiential parameter to be adjusted like other algorithms

(the proposed algorithm is the same as FDK when p = 0,

and the number of p means the degree of compensation in

the z direction). Equation (8) can be rewritten as:

w3D x; y; zð Þ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p 	 z2

Rþ x cos hþ y sin hð Þ2þ y cos h� x sin hð Þ2

s
:

ð9Þ

Different from FDK, in the proposed algorithm, the

weights of conjugate rays are always unequal and bigger

than 0.5 in the non-central plane. It does not have the big

weakness of Weighted FDK (the weight will never be ??
or -?), and it is a hilltop-like function and meets the

fourth condition:

Fig. 3 Cone angle under the native CB geometry

Fig. 4 (Color online) 3D weight as functions of t and s

Table 1 System parameters of

CBCT in simulations and

experiment (scan angle, 360�;
detector pixels, 512 9 512;

image matrix,

512 9 512 9 512)

Parameters 3D Shepp–Logan Defrise disk Industrial object

Source-to-rotation-center distance (mm) 480 480 978.9

Source-to-detector-center distance (mm) 960 960 1235.7

Detector size (mm) 512 9 512 512 9 512 102.4 9 102.4

Size of each voxel (mm) 0.5 0.5 0.16

Cone angle of the X-ray beam (�) ±15 ±15 ±2.4
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Fig. 5 (Color online)

Reconstructions of the standard

3D Shepp–Logan phantom, x–

z views. Display window [0.98,

1.05]: a fan-beam CT scan,

b FDK, c Weighted FDK,

d proposed algorithm, e the

centrally vertical profiles of the

slices in b–d

Fig. 6 (Color online)

Reconstructions of the Defrise

disk phantom, x–z views.

Display window [0.5, 1.1]:

a fan-beam CT scan, b FDK,

c Weighted FDK, d proposed

algorithm, e the centrally

vertical profiles of slices in b–d
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w3D z; t; sð Þ þ w3D z; t; scð Þ� 1:0: ð10Þ

The degree of compensation in the z direction can be

expressed as:

w
making up
3D ¼ w3D z; t; sð Þ þ w3D z; t; scð Þ � 1

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p 	 z2

Rþ sð Þ2þt2

s
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p 	 z2

R� sð Þ2þt2

s
� 1; p� 0:

ð11Þ

Figure 4 shows the 3D weight as functions of t and s, at

p = 1.0, R = 375 mm, and z = ±100 mm. The surface

shape is similar to a half saddle, proving that the function is

also a hilltop-like function. The surface is relatively high in

the middle and relatively low on both sides in the t direc-

tion, and reduces as s increases (for the voxel in a plane,

the farther away from the source, the smaller the cone

angle, and the smaller the weight).

Finally, the proposed algorithm starting from making up

missing data and conjugate rays can be expressed as:

f x; y; zð Þ ¼
Z2p

0

dso2

Rþ x cos hþ y sin hð Þ2
� w3D x; y; zð Þ

� dsoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ u2 þ v2

p g h; u; vð Þ
� �

� h uð Þdh;

ð12Þ
4 Results and discussion

4.1 The experiment object and parameters

Simulationswere performedwith the standard 3DShepp–

Logan phantom [30] and Defrise disk phantom [31] to

evaluate FDK, Weighted FDK and the proposed algorithm.

An industrial component (the data were obtained from the

authors’ laboratory) was tested to evaluate the three algo-

rithms. The experiment parameters are given in Table 1.

In order to get correct parameters in Weighted FDK, we

chose c2 = 0 first and adjusted c1 to correct for the intensity

Fig. 7 (Color online) Reconstructions of the industrial component, x–z views. Display window [0.5, 1.5]: a FDK, b Weighted FDK, c proposed
algorithm, d the profiles by the three algorithms on the location marked as line C in a
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drop along x = y = z. This determined c1 and tuned c2 to

correct for residual drop as a function of radial distance from

the origin. Besides, we added the image of fan-beam CT

scans of the same object as a reference in two simulations.

4.2 Reconstruction results

Figure 5 shows reconstruction results of the standard 3D

Shepp–Logan phantom at y = -25 mm, c1 = 1.32,

c2 = 0.05 and p = 1.87. While the FDK results were the

worst, both Weighted FDK and the proposed algorithm

achieved good results. However, adjusting the two

parameters in Weighted FDK was more complicated than

in the proposed algorithm.

Figure 6 shows reconstruction results of the Defrise disk

phantom at y = 0 mm, c1 = 4.8, c2 = 0.2 and p = 120.

The FDK did badly. The Weighted FDK improved the

image quality in some degree, but the intensity drop still

existed in the z direction (there would be a distortion in the

image if we enlarged c1 or c2). With a better mathematical

model, the proposed algorithm eliminated the intensity

drop to a large degree and made great corrections to the

subjective sight and the profiles.

Figure 7 shows reconstruction results of the industrial

component at y = 0 mm, c1 = 32, c2 = 0.3 and p = 3000

(there was a small image distortion by enlarging c1 or c2).

Comparing with FDK, the correction of Weighted FDK

algorithm was inconspicuous, while the proposed algo-

rithm performed the best, with good subjective sight and

profiles.

Table 2 is the numerical comparison of slice quality in

Fig. 7, where rectangle A is the comparison position of the

signal to noise ratio (SNR), and rectangle B is the com-

parison position of the contrast to noise ratio (CNR) and

average gradient (AG) [32]. It can be seen clearly from

Table 2 that SNR and AG of the proposed algorithm are

much better than that of the Weighted FDK, but the

improvement in CNR by this algorithm is the same as

Weighted FDK because of increases in stochastic, quantum

noise of the reconstruction as a result of different weights

assigned to the rays (a noise-optimal reconstruction algo-

rithm like standard FDK would assign equal weight to the

two rays).

From the results of the standard 3D Shepp–Logan

phantom, Defrise disk phantom and the industrial compo-

nent, it is easy to find FDK, Weighted FDK and the pro-

posed algorithm are completely equivalent at the center

plane. Weighted FDK is effective when the cone-beam

artifacts are inconspicuous; but it cannot work well when

the artifacts became conspicuous, as the mathematical

model may be not suitable. With a better mathematical

model combining the CB-FBP algorithm and Weighted

FDK algorithm, the proposed algorithm achieves better

results in the simulations and the real objects and is more

valuable in practice, because the artifacts of industrial

objects are more conspicuous than simulations.

5 Conclusion

From the view of conjugate rays and making up missing

data, we present a 3D weighting cone-beam CT recon-

struction algorithm under large cone angle scan. Keeping in

circular source trajectory, without any action of rebinning,

the algorithm just adds a weighting function in the back-

projection progress and can be realized easily, with the data

flow being identical to FDK. The algorithm is equivalent to

FDK in the central plane. Improving the accuracy of

original FDK significantly and reducing the cone angle

artifacts, the proposed algorithm achieves better image

quality than FDK and Weighted FDK in phantom simula-

tion and real object test. Besides, it has good adaptability

under large cone angle scan (±15�). For real objects, the
algorithm improves image quality greatly even in small

cone angle (because artifacts of real objects are more

conspicuous than simulation phantoms), indicating its

value in practical applications. The parameter-adjustment

time can be saved as one needs to adjust just one param-

eter, p. For super complex objects, p can be an experiential

function if necessary. The algorithm can be widely applied

in medical diagnosis and nondestructive testing.
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