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An iterative image reconstruction algorithm for SPECT∗
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Properties of two algorithms for iterative reconstruction of SPECT images, LS-MLEM and LS-OSEM,are
studied and compared with the ML-EM algorithm in this paper. By using projection data of heavy-noise, their
effectiveness in improving SPECT image quality is evaluated. A phantom with hot and cold lesion is used in the
investigation. The reconstructed images using LS-MLEM or LS-OSEM show that there is not a rapid increase in
image noise,and the “best” estimate is assuming that the reconstructed images satisfy the statistical model. The
major advantage of using LS-MLEM or LS-OSEM algorithm in SPECT imaging is in their ability to accurately
control for heavy-noise. And LS-OSEM algorithm obviously improves the convergence rate.
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I. INTRODUCTION

In single photon emission computed tomography (SPECT)
applications, the projection data of radiotracer activity are
heavily contaminated by statistical noise. The noise-control
methods of iterative image reconstruction and incorporat-
ing statistical models can provide better noise properties
than the conventional filtered back-projection method. The
maximum-likelihood expectation-maximization(ML-EM) al-
gorithm and ordered-subset variant (OSEM) algorithm [1, 2]
are widely applied. However, the impact of statistical noise is
a key problem in the image reconstructions, and it is crucial
to estimate uncertainties of the reconstructed images [3].

In practical applications, firstly, the iterative algorithm is
terminated before convergence to control the noise in re-
constructed images, for higher-noise (low-count) specially.
Only a few iterative algorithms with explicit multiplicative
update equations can be applied. So many iterative al-
gorithms, such as those based on principles of maximum-
likelihood, penalized-likelihood and Bayesian maximum a
posteriori(MAP) estimation, are applied to image reconstruc-
tion. However, these iterative algorithms are nonlinear, and
a theoretical formulation for noise propagation in image re-
construction has been intractable. Whichever noise-control
algorithm is used, at least one arbitrary parameter (often sev-
eral) shall be chosen, but how to choose it (them) is a key
issue.

Secondly, those iterative algorithms are derived by assum-
ing a low-noise (high-count) approximation, which means
that the noise in the reconstructed images is much smaller
than the mean images. Therefore, they become less accu-
rate at higher-noise. As iteration number increases, noise
variance in a reconstructed image tends to increase. So, a
noise-controlling iterative algorithm in ML-EM reconstruc-
tion stops before the ML point is reached [4, 5], and the final
image obtained depends on the stopping point.

∗ Supported by the Priority Academic Program Development of Jiangsu
College Education
† Corresponding author, jwzhao@nju.edu.cn

For statistical estimation problems, the best estimate can
also be determined using the least squares (LS) and weighted
least squares (WLS) criterion. The iterative algorithms pro-
posed for LS or WLS image reconstruction include the op-
timal step size (OSS) algorithms, the gradient descent (GD)
algorithms, the conjugate gradient (CG) algorithms, etc. The
primary difference among them is the way to determine the
step direction. CG algorithms are used the most widely in
SPECT image reconstruction [6–8]. The step direction de-
pends on the previous step direction and the gradient direc-
tions. The advantage of CG algorithms is that each new
step dose not spoils the work of previous steps. However,
this is not the case for LS/WLS-CG algorithms with a pre-
conditioner, i.e. a transformation matrix. Performance of
the LS/WLS-CG algorithms depends heavily on the pre-
conditioner chosen. In general, the convergence rate of the
WLS-CG algorithm is about ten times that of the ML-EM
algorithm. Also, at large iteration numbers, the WLS-CG ex-
hibits a faster increase in image noise than the ML-EM al-
gorithm. The WLS-CG algorithm uses a Gaussian statistical
model instead of the more correct Poisson model used in ML-
EM algorithms. So, the WLS-CG algorithms are less accurate
at higher-noise (low-count), and they are not easy to incorpo-
rate the non-negativity constraint in the reconstruction, unlike
ML-EM algorithms. According to standard least squares, the
mathematical form of the LS criterion is an equation. Because
of the equation elements contaminated by statistical noise and
the large dimension of the equation, the close-form solutions
of the equation are not often used in image reconstruction
directly. The statistical noise is a Poisson model at higher-
noise. Therefore, it is proposed that the equation based on
standard least squares should be estimated using the ML-EM
algorithms. Termed as LS-MLEM algorithm in this paper, it
is advantageous in avoiding negativity and a faster increase
in image noise at large iteration numbers. Mainly, the LS-
MLEM based on least squares and ML-EM satisfies the Pois-
son model and a low-noise approximation.
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II. LS-MLEM ALGORITHM

In SPECT, the process of obtaining projection data is as
follows:

P = Cλ, (1)

where P is the vector with the elements representing photon
counts measured in a given projection bin, λ is the vector with
the elements representing photon counts emitted from a given
voxel, and C is a system matrix with the elements cil repre-
senting the relative contribution of lth voxel to projection bin
pi. The matrix C may model the effects of attenuation, de-
tector response, and/or scatter, but these effects are ignored
in this paper, so as to evaluate the result of reconstructed im-
age based on LS-MLEM algorithm. Since the measurement
of P is contaminated by noise, P is frequently modeled as
a random process, and the elements are independent Poisson
random variables.

The mathematical form of the LS criterion is given by

E(λ) = ||P −Cλ||2. (2)

The squared residual error E(λ) shall be minimized. Accord-
ing to standard least squares, we have

CTP = CTCλ, (3)

where CT is transpose matrix of the system matrix C.
Defining X = CTP , its elements xj are determined by

Xj =

I∑
i=1

cijpi j = 1, 2, · · · , J, (4)

where, I is the total number of given projection bin, and J is
the total number of given voxel in a slice. P includes a Pois-
son noise. Therefore xj in Eq. (4) is a linear superposition
of the projection data with Poisson noise. Therefore, the vec-
tor X , with its elements xj , also include Poisson noise. The
close-form solution of Eq. (3) does not satisfy non-negativity
constraint in the reconstruction. Signal-to-noise ratio SNRx
of the vector X is given by SNRx ∝ I1/2SNRp, SNRp is
signal-to-noise ratio of the vector P . Since the total number
of projection bin is several thousands, the SNRx being ten
times more than the SNRp can be approached.

In Eq. (3), let H = CTC be a constant matrix based on
system matrix, its elements hjl is determined by

hjl =

I∑
i=1

cijcil j, l = 1, 2, · · · , J. (5)

Because Eq. (3) is of lower-noise, ML-EM iterative algo-
rithm based on statistical model is applied to estimate Eq. (3).
Taking into account the Poisson statistics in the vector X , the
LS-MLEM algorithm can be written as

λk+1
j =

λkj∑
i hij

∑
i

hijxi∑
l hilλ

k
l

. (6)

Fig. 1. The true phantom.

Fig. 2. SNRx versus SNRp.

As compared with Eq. (6), the conventional ML-EM algo-
rithm of Eq. (1) is written as

λk+1
j =

λkj∑
i cij

∑
i

cijpi∑
l cilλ

k
l

, (7)

where k is the kth iteration. When the projection data includes
higher-noise, the iteration for Eq. (6) is an iterating process
with lower-noise, unlike Eq. (7) with higher-noise. It is well
known that the ML-EM algorithm can get accurate image at
lower-noise. So the noise propagated in reconstructed image,
obtained using Eq. (6), can be controlled under lower-noise
level.

III. COMPUTER SIMULATION

To evaluate the properties of the LS-MLEM algorithms,
we use a simulation phantom with hot and cold lesion. As
shown in Fig. 1, the voxel is 3.00mm and true image is of
121× 121 pixels, obtained using calculation of 2420× 2420
small pixels. The hot-to-background ratio of 5:1is assumed,
and activity of the cold is zero. The radius of background is
18.15 cm, and the radius of hot and cold is 4.0 cm. The dis-
tance between hot and cold centers is 18.0 cm. A low-energy
(140 keV) general-purpose parallel-beam collimator (square
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Fig. 3. Reconstructed images of the phantom in Fig. 1 (The LS-OSEM results will be discussed later).

Fig. 4. SNR versus iteration number (—, ML-EM; -·-, LS-MLEM; ---, LS-OSEM).

holes,of 2.24mm size, 4.90 cm length, and 0.76mm septa)
is used. The SPECT head rotates around the phantom, with
radius of rotation of 18.15 cm. The effects of scatter, pene-
tration and detector response function are ignored. Using the
phantom, the simulated projection data are binned into 121-
element arrays for each of the 120 views over 360◦. Pois-
son noise fluctuations are then added to the simulated projec-
tion data. The projection data with SNRp = 5, 10, 20, 30,
40, 50, 60, 70, 80, 90 and 100, i.e. the count/bin ratios of

25, 100, 400, 900, 1600, 2500, 3600, 4900, 6400, 8100 and
10 000 respectively, are used in evaluating the improved noise
SNRx. In Fig. 2, the SNRx data are compared with SNRp
data. The same projection data with noise are used to calcu-
late the SNRx and SNRp. Fig. 2 indicates that the SNRx is
proportional to the SNRp, but the SNRx is almost 25 times
larger than the SNRp. The noise of vector X is remarkably
improved, and the LS-MLEM is an iteration algorithm with
lower-noise.
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To emphasize LS-MLEM applied in projection data with
higher-noise,projection data sets of SNRp = 5, 10, 20 and
30, are used in the reconstructions. The system matrix is ob-
tained by calculating 2420×2420 small pixels. Both ML-EM
and LS-MLEM iterative algorithms are used in reconstruct-
ing the simulated projection data. Images of 121×121 pixels
are reconstructed from 120 projections sampled over 360◦.
Results from the higher-noise data allow us to study proper-
ties of the iterative reconstruction methods with LS-MLEM.
An important property is its convergence rate. Also, the four
higher-noise data sets allow comparison of LS-MLEM with
ML-EM in noise improvement. And we have a better assess-
ment of the improved reconstructed image quality.

IV. RESULT AND DISCUSSION

Figure 3 shows the reconstructed images, obtained using
the ML-EM and LS-MLEM with Poisson noise added to
the projection data, after the 20th, 40th, 90th, 140th, 500th and
1000th iteration.

Figure 4 shows the signal-to-noise ratio as function of iter-
ation number for the ML-EM and the LS-MLEM algorithms,
plotted by the solid line and dash dot line, respectively. The
signal-to-noise ratio for the full, background and hot recon-
struction field are respectively plotted from first to third col-
umn. As Fig. 4 shows, for ML-EM, the maximum signal-
to-noise ratio in full field is at 20th, 40th, 90th and 140th iter-
ation at SNRp = 5, 10, 20 and 30 respectively; while for
LS-MLEM, the signal-to-noise increases all the way to the
end.

Figure 3 shows that the noise artifacts in the reconstructed
image, obtained using ML-EM, tend to increase with iteration
number. This is more obvious as the SNRp decrease which is
consistent with Fig. 4. However, Figs. 3 and 4 show that noise
in the LS-MLEM-reconstructed image tends to decrease with
increasing iteration number where the artifacts do not change
obviously.

However, it is obvious that the convergence rate of the LS-
MLEM is slower than the ML-EM. To increase the conver-
gence rate, ordered-subset is applied to LS-MLEM algorithm
(called LS-OSEM in this paper). The results, obtained us-
ing LS-OSEM with 10 subsets, are plotted in Figs. 3 and 4.
The convergence rate using LS-OSEM is improved obviously.
Compared with ML-EM, the noise and artifacts from LS-
OSEM do not change by much, though their increase can
be seen in the reconstructed images with SNRp = 5 and
10, at higher iteration number. A maximum signal-to-noise
ratio is at 170th iteration for SNRp = 5. The result of
SNRp = 20 and SNRp = 30 consist with LS-MLEM. As
shown in Figs. 3 and 4, the SNR and quality of image, ob-
tained using LS-OSEM, are better than the ML-EM, for hot
field especially.

To further evaluate the iterative algorithms in terms of im-
age quality, Fig. 5 shows the line profile along axis of the cen-
tral transverse cross section. The dotted line is of the phan-
tom, while the other lines are defined the same as in Fig. 4.
The line profile of ML-EM is at maximum signal-to-noise ra-

Fig. 5. Profile (· · · , true phantom, —, ML-EM; -·-, LS-MLEM; ---,
LS-OSEM).
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tio, while the line profile of LS-MLEM and LS-OSEM are
at the 1000th and 170th iterations, respectively. The horizon-
tal axis is pixelnumber and vertical axis is activity. Note that
Fig. 5 shows the image reconstructed by ML-EM algorithm
higher noise than those by the LS-MLEM and LS-OSEM
algorithm, and that the line profile of LS-MLEM and LS-
OSEM algorithm is the “best” estimate of assuming that the
line profile satisfy the statistical model. Figs. 3, 4 and 5 also
indicate that the difference between ML-EM and LS-MLEM
or LS-OSEM decreases with increasing SNRp.

V. CONCLUSION

Using standard least squares, Eq. (1), of higher-noise, can
be converted to Eq. (3), of lower-noise. The SNRx is ten
times more than the SNRp. This can provide an algorithm of

improved noise property for the iterative image reconstruc-
tion. By incorporating ML-EM or OSEM, the LS-MLEM or
LS-OSEM algorithm imposes a positivity constraint on the
reconstructed image pixel values. Using the conventional
OSEM algorithm for the LS-MLEM, the convergence rate
is obviously improved. The LS-MLEM or LS-OSEM algo-
rithms for SPECT imaging are advantageous in their ability
of controlling higher-noise accurately to achieve improved
image quality. This will not be the case when the projection
data are of lower-noise, as the difference between ML-EM
and LS-MLEM or LS-OSEM decreases gradually with the
noise, however, the projection noise is heavily contaminated
by statistical noise, practically. The LS-MLEM or LS-OSEM
is meaningful in SPECT application. Further efforts will be
made in modeling the imaging process for compensating im-
age degrading factors, such as attenuation, scatter and spatial
resolution.

[1] Shepp L A and Vardi Y. IEEE T Med Imaging, 1982, 2: 113–
122.

[2] MHudson H and Larkin R S. IEEE T Med Imaging, 1994, 4:
601–609.

[3] Huesman R H. Phys Med Biol, 1984, 5: 543–552.

[4] Llacer J, Veklemv E, Coakley K I, et al. IEEE T Med Imaging,
1993, 2: 215–231.

[5] Green P J. IEEE T Med Imaging, 1990, 1: 84–93.
[6] Tsui B M W, Zhao X D, Frey E C, et al. IEEE T Nucl Sci, 1991,

6: 1766–1772.
[7] La V and Grangeat P. Phys Med Biol, 1998, 43: 715–727.
[8] Zeng G L, Gagnon D, Natterer F, et al. IEEE T Nucl Sci, 2003,

5: 1590–1594.

030302-5


	An iterative image reconstruction algorithm for SPECT
	Abstract
	Introduction
	LS-MLEM algorithm
	Computer simulation
	Result and Discussion
	Conclusion
	References


