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A genetic-algorithm-based neural network approach for EDXRF analysis∗
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In energy dispersive X-ray fiuorescence (EDXRF), quantitative elemental content analysis becomes difficult
due to the existence of the noise, the spectrum peak superposition, element matrix effect, etc. In this paper, a
hybrid approach of genetic algorithm (GA) and back propagation (BP) neural network is proposed without con-
sidering the complex relationship between the elemental content and peak intensity. The aim of GA-optimized
BP is to get better network initial weights and thresholds. The starting point of this approach is that the recipro-
cal of the mean square error of the initialization BP neural network is set as the fitness value of the individuals
in GA; and the initial weights and thresholds are replaced by individuals, then the optimal individual is searched
by selecting, crossover and mutation operations, finally a new BP neural network model is established with the
optimal initial weights and thresholds. The quantitative analysis results of titanium and iron contents in five
types of mineral samples show that the relative errors of 76.7% samples are below 2%, compared to chemical
analysis data, which demonstrates the effectiveness of the proposed method.
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I. INTRODUCTION

Vanadium-bearing titanomagnetite is an important source
of iron and titanium oxide, with highly comprehensive utiliza-
tion values. It is characterized by complex element composi-
tion, hence there is an essential need of elemental analysis to
estimate mineral species in industries. Traditional chemical
analysis is accurate but time consuming and costly. Energy
dispersive X-ray fiuorescence (EDXRF) is a non-destructive
technique widely used in mining industry [1].

EDXRF-based instruments have been developed and com-
mercialized for cement and mineral production, ore explo-
ration, environmental monitoring, mine mapping, process
monitoring, etc. [2–6]. While matrix effect is a key factor
for accuracy of EDXRF analysis of complex samples, es-
pecially the absorption-enhancement effect among elements.
This effect can greatly interfere the fiuorescence counting rate
and cause big errors between the counting rate and element
content. Therefore, seeking appropriate method to correct the
matrix effect and improve analysis accuracy is an important
research issue in X-ray analysis [7–9]. To a large extent, tradi-
tional correction methods, either experimental or mathemati-
cal, depend on accuracy of standard samples [10]. The fun-
damental parameter (FP) methods are hindered by difficulties
in obtaining accurate basic parameters [11]. Recently using
Radial Basis Function (RBF) neural network to adjust the ma-
trix effect has received good results as reported in Ref. [12].
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In this paper, a hybrid algorithm of genetic algorithm (GA)
and back propagation (BP) neural network is proposed with-
out considering the complex relationship between the concen-
tration and intensity. The aim of GA-optimizing BP is to get
better network initial weights and thresholds. The basic idea
is as follows: The reciprocal of the mean square error of the
initialization BP neural network is set as the fitness value of
the individual in GA; the initial weights and thresholds are
replaced by individuals, the optimal individual is searched by
selecting, crossover and mutation operations, and a new BP
neural network model is finally established with the optimal
initial weights and thresholds.

The outline of the paper is as follows. The model forma-
tion is conducted in Sec. II. In Sec. III, we discuss the compu-
tational results and the effectiveness of the proposed model.
Finally, conclusions are given in Sec. IV.

II. METHODOLOGY

The GA-BP model has three layers with m nodes in the
input layer, h nodes in the hidden layer, and n nodes in the
output layer. The model is implemented to determine a basic
state space of connection weights matrix. Then, the num-
ber of hidden nodes and connection weights matrix are en-
coded into a mixed string that consists of integer value and
real value [13, 14]. In this paper the experimental data is di-
vided into two parts: training samples and testing samples.
The scheme is described as follows:

Step 1: In the calculations, a three-layered BP neural net-
work is employed to estimate basic state space of connection
weights that are within [−1,1] for the training samples.

Step 2: Encode connection weights and number of hidden
nodes. The hidden nodes are encoded as binary code string:
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1, . . . , 1 0.2, . . . , 0.7 0.3, . . . , 0.1 0.2, . . . , 0.3 0 .9, . . . , 0.8
A B C D E

1 is for connection to input and output nodes; and 0 with no
connection. The weights are encoded as float string, with
string length H = m ∗ h + h + h ∗ n + n (m is the num-
ber of input nodes, n is the number of output nodes, h is the
number of hidden nodes). Each string corresponds to a chro-
mosome, which consists of some gene sections, tabulated as
above illustrations. Where, A stands for the number of hid-
den neurons; B stands for weights between input and hidden
neurons; C stands for threshold of hidden neurons; D stands
for weights between hidden and output neurons; E stands for
threshold of output neurons. A is encoded in binary type, and
other parts in real value. The values change in training period.

Step 3: Initialize a population of chromosomes. The length
L of each chromosome equals to G + H , where G is the
length of binary code of the hidden node numbers and H is
the length of real-valued code of connection weights.

Step 4: Calculate fitness individually using Eq. (1),

f(x) =
1

SE
=

1

sse(T ′ − T )
=

1∑n
i=1(t

′
i − ti)2

, (1)

where T ′ = {t′1, t′2, · · · , t′n} is the desired output , and T =
{t1, t2, · · · , tn} is the real data.

Step 5: Calculate the sum of all fitness values of the indi-
viduals in a population, and calculate relative fitness value of
each individual using Eq. (2), as the probability of heredity to
the next generation. Then copy the highest fitness individual
directly to a new offspring, and select other individuals by the
method of spinning the roulette wheel [15].

F =

n∑
i=1

f(Xi), Pi =
f(Xi)

F
. (2)

Step 6: Use basic crossover and mutation operations to the
control code, namely, if a hidden node is deleted (added) ac-
cording to mutation operation, the corresponding control code
is encoded to be 0 (or 1). The crossover and mutation opera-
tors of weights are encoded as follows:

(a) Crossover operation with probability pc (the subscript c
denotes “crossover operation”)

Xt+1
i = ciX

t
i + (1− ci)Xt

i+1, (3)

Xt+1
i+1 = (1− ci)Xt

i + ciX
t
i+1, (4)

whereXt
i andXt

i+1 are a pair of individuals before crossover,
Xt+1

i and Xt+1
i+1 are a pair of individuals after crossover, ci is

taken as random value within [0,1].
(b) Mutation operation with probability pm (the subscript

m denotes “mutation operation”)

Xt+1
i = Xt

i + ci, (5)

where Xt
i is individual before mutation, Xt+1

i is individual
after mutation ci is taken as random value within [0,1]

Step 7: Generate the new population and replace the cur-
rent population. Steps 4∼7 are repeated until convergence
conditions are satisfied.

Step 8: Decode the highest fitness individual, obtain corre-
sponding thresholds and connection weights, and use the new
weights and thresholds to train network again. Then, output
the prediction results.

III. MODEL IMPLEMENTATION AND RESULTS

Mineral samples were collected in two mine plants in
Panzhihua, Sichuan province, China, 40 sample groups from
each plant. The samples included five mineral types: iron
ore concentrate, iron gangues, titanium concentrates, titanium
gangues and raw ore. Each sample group was about 4 kg.
They were smashed and ground into powders in an agate mor-
tar for 30 minutes, so as to ensure the homogeneity and re-
duce the granularity effect. The powders were sieved to 180
meshes and dried for 1 hour in an oven at 105 ◦C∼110 ◦C in
order to reduce the humidity effect. The samples for EDXRF
measurement were prepared by tabulating the mineral pow-
ders.

The samples were analyzed by a typical EDXRF exper-
iment setup, containing a vacuum chamber (to reduce the
counts from argon in the air), an X-ray tube, a sample car-
rier and a detector. The X-ray tube was operated at 12.25 keV
and 25.56 µA. Fiuorescent X-rays from the samples were de-
tected by an electric cooled Si(PIN) semiconductor detector
with an energy resolution of 180 eV to 190 eV for 5.9 keV.
Each group was measured for three times and each measure-
ment lasts 3 minutes. The final spectrum was obtained by cal-
culating the mean counting rate of the three measurements.

The five types of mineral samples contain 10 metal ele-
ments, i.e. Ca, V, Cr, Ni, Cu, Zn, As, Pb, Ti and Fe, with
Fe and Ti being the main composition elements. The count-
ing rates (per channel) in the spectrum section of 4.038 keV
to 8.364 keV (280∼580 channels after energy calibration)
were chosen as main factor of element content influence.
Elements in this section contains Kα X-ray peaks of Ti
(4.510 keV), Fe (6.403 keV), V (4.951 keV), Ni (7.477 keV)
and Cu (8.046 keV). So, the competitional layer structure in
GA-BP network is designed for 9 × 2 dimensions, as there
are 9 hidden nodes and 2 output neurons. The hidden nodes
are obtained according to the empirical formula log2 n, where
n is the number of neurons in input. The count rate in each
channel was taken as the input vector of GA-BP net, and the
Ti and Fe concentrations as GA-BP network output variables.
The activation function adopted here from input to hidden
layer is logsig, while from hidden to output layer it is purelin
function, and the training function is traincgb. For the pro-
posed hybrid neural network, the parameters in Table 1 were
applied to training samples and prediction.

For the five types of minerals, we did 30 times of training
and forecast, and calculated the average relative prediction
error, standard deviation and coefficient of variation (CV), as
a judgment standard of accuracy and precision of the model.
In Table 2, for 76.7% of the samples, the GA-BP forecast
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TABLE 1. Required model parameters
Name of Variables Value Name of Variables Value
Training Sample 50 training function traincgb()
Testing Sample 30 transfer function(H) logsig()
Number of Input Nodes 301 transfer function(O) purelin()
Number of Hidden Nodes 9 Crossover Probability pc 0.80
Number of Output Nodes 2 Mutation Probability pm 0.09
Learning Rate 0.05 Population 20
Training Epochs 1000 Generation Number 20
Training Goal (MSE) 10−7

TABLE 2. The experimental results averaging 30 times

Sample
Fe% Ti%

Chemical GA-BP Relative% Standard% CV Chemical GA-BP Relative% Standard% CV
analysis forecast error% deviation% % analysis forecast error% deviation% %

Iron ore 19.21 19.00 1.07 0.099 0.53 5.61 5.55 1.09 0.034 0.61
gangue 18.83 18.95 0.60 0.098 0.52 5.50 5.54 0.56 0.030 0.54

18.48 18.98 2.75 0.093 0.49 5.40 5.55 2.85 0.022 0.40
19.21 19.04 0.88 0.094 0.49 5.61 5.56 0.93 0.028 0.50
18.83 18.93 0.49 0.106 0.56 5.50 5.52 0.28 0.023 0.42
18.48 18.73 1.39 0.103 0.55 5.40 5.48 1.49 0.021 0.39

Concentrated 35.05 34.63 1.18 0.18 0.51 27.28 26.97 1.14 0.14 0.53
titanium ore 34.36 34.28 0.24 0.11 0.32 26.75 26.71 0.16 0.08 0.31

33.71 34.75 3.08 0.17 0.50 26.24 27.08 3.17 0.13 0.47
35.04 34.88 0.48 0.16 0.45 27.28 27.13 0.58 0.11 0.41
34.37 34.82 1.31 0.15 0.44 26.76 27.07 1.19 0.10 0.37
33.71 34.67 2.84 0.13 0.36 26.24 26.98 2.79 0.11 0.42

Titanium ore 14.85 14.75 0.67 0.065 0.44 3.32 3.29 0.73 0.015 0.44
gangue 14.56 14.67 0.71 0.078 0.53 3.25 3.27 0.77 0.016 0.50

14.28 14.69 2.83 0.11 0.77 3.19 3.27 2.60 0.027 0.83
14.85 14.68 1.14 0.067 0.47 3.31 3.28 1.06 0.019 0.56
14,56 14.72 1.05 0.075 0.51 3.25 3.28 0.97 0.014 0.43
14.29 14.60 2.33 0.084 0.57 3.19 3.26 2.18 0.022 0.66

Concentrated 54.45 53.91 0.99 0.28 0.52 7.70 7.62 1.08 0.037 0.48
iron ore 53.40 53.92 0.97 0.22 0.40 7.55 7.63 1.00 0.036 0.47

52.37 53.56 2.46 0.23 0.43 7.41 7.58 2.28 0.030 0.40
54.44 53.71 1.35 0.34 0.63 7.70 7.59 1.47 0.042 0.55
53.39 53.17 0.42 0.30 0.57 7.55 7.52 0.43 0.034 0.45
52.38 53.40 1.99 0.26 0.48 7.41 7.55 1.93 0.032 0.43

Original mine 31.78 31.43 1.15 0.13 0.44 6.51 6.45 0.97 0.028 0.44
31.16 31.24 0.26 0.17 0.53 6.39 6.41 0.30 0.030 0.47
30.57 31.26 2.25 0.24 0.46 6.27 6.41 2.31 0.035 0.54
31.78 31.62 0.59 0.20 0.65 6.51 6.48 0.52 0.028 0.42
31.16 31.27 0.68 0.18 0.58 6.39 6.41 0.43 0.034 0.52
30.57 31.09 1.83 0.18 0.59 6.27 6.37 1.67 0.048 0.75

results of Ti and Fe contents in the five types of minerals are
almost the same as the chemical analysis results (with relative
errors of less than 2%). Table 3 and Fig. 1 show the whole
genetic process and the convergence of the genetic algorithm.
It is found that the model shows a fast convergence and high
efficient fitness process.

IV. CONCLUSION

For accurate analysis of EDXRF, new techniques for
data processing against the effect of absorption-enhancement
among elements are of importance. Based on previous stud-

TABLE 3. Epochs and fitness value
Value Epochs Fitness
Min 21 0.0537
Max 74 0.1034
Average 38 0.0719

ies, we proposed a hybrid GA-BP approach for data handling
of EDXRF spectra of complex samples, such as vanadium-
bearing titanomagnetite. The established GA-BP model has
features of memorizing new type, associating existed type,
studying unknown type, and finally achieving effective pre-
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Fig. 1. (a) Best training performance and (b) fitness function of concentrated titanium ore.

diction of complex samples. By doing so, the model can re-
duce matrix effect and improve measurement results of com-
plex samples. In the future work, we would like to col-

lect more ore samples in Panzhihua field to test the model
effectiveness and judge the generalization ability of the pro-
posed model for all available samples in Panzhihua field.
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