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The present study is to develop a new user-defined function using artificial neural networks intent Com-
putational Fluid Dynamics (CFD) simulation for the prediction of water-vapor multiphase flows through fuel
assemblies of nuclear reactor. Indeed, the provision of accurate material data especially for water and steam
over a wider range of temperatures and pressures is an essential requirement for conducting CFD simulations
in nuclear engineering thermal hydraulics. Contrary to the commercial CFD solver ANSYS-CFX, where the
industrial standard IAPWS-IF97 (International Association for the Properties of Water and Steam-Industrial
Formulation 1997) is implemented in the ANSYS-CFX internal material database, the solver ANSYS-FLUENT
provides only the possibility to use equation of state (EOS), like ideal gas law, Redlich-Kwong EOS and piece-
wise polynomial interpolations. For that purpose, new approach is used to implement the thermophysical prop-
erties of water and steam for subcooled water in CFD solver ANSYS-FLUENT. The technique is based on
artificial neural networks of multi-layer type to accurately predict 10 thermodynamic and transport properties
of the density, specific heat, dynamic viscosity, thermal conductivity and speed of sound on saturated liquid and
saturated vapor. Temperature is used as single input parameter, the maximum absolute error predicted by the
artificial neural networks ANNs, was around 3%. Thus, the numerical investigation under CFD solver ANSYS-
FLUENT becomes competitive with other CFD codes of which ANSYS-CFX in this area. In fact, the coupling
of the Rensselaer Polytechnical Institute (RPI) wall boiling model and the developed Neural-UDF (User Defined
Function) was found to be useful in predicting the vapor volume fraction in subcooled boiling flow.
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I. INTRODUCTION

The present study is concerned with artificial neural net-
works support to the ongoing study on nucleate boiling.
The focus is placed on numerical simulations of the pre-
conditioning of two phase flows in a circular tube with heated
wall under pressurized conditions. Computational fluid dy-
namic techniques show increasing promise for the simulation
of subcooled nucleate boiling [1]. The commercial Com-
putational Fluid Dynamics (CFD) solver ANSYS-FLUENT
is employed as the computational platform and the Eulerian
method in combination with RPI boiling model is used, where
the phases are assumed to be interpenetrating continua. This
model is the most general and complex of all multiphase flow
models. The advantage of ANSYS-FLUENT is the number
of turbulent model adapted to special case. On the other hand,
CFX was the go-to code for turbomachinery.

Contributions are made towards an improved flow boil-
ing model under Pressurized Water Reactor (PWR) condi-
tions by carrying out detailed CFD analyses based on ex-
perimental data of void distributions in heated tubes. When
a heated surface exceeds the saturation temperature of sur-
rounding coolant, boiling on the surface becomes possible.
Bubbles formed on the heated surface depart the surface and
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are transported by the bulk fluid, such that a condition of two-
phase flow is said to exist. Depending on degree of subcool-
ing and length of the heated tube, the bubbles may or may
not condense and collapse prior to exiting the tube. In sub-
cooled boiling this process results in further heating of the
fluid toward the saturation temperature. In saturated or bulk
boiling, bubbles can be transported along the entire length of
the heated tube without collapsing [2].

In Rensselaer Polytechnical Institute (RPI) wall boiling
model or heat partitioning model, implemented in the solver
ANSYS-FLUENT version 14.5.0, the overall heat flux from
the heated wall to the two-phase flow includes convective,
quenching and evaporation heat flux. Furthermore, the heat
flux partitioning model associates each of the heat flux con-
tributions with a dimensionless wall area ratio, so as to define
the ratio between heat flux contributions [1]. An important
aspect is the knowledge and understanding of the fluid behav-
ior in process of heat transfer. The thermophysical properties
of water and steam are indicated as the fundamental proper-
ties that govern the process [3].

There are several ways to focus on the thermodynamic and
transport properties: through different state equations and by
a number of approximation functions. In the early 1990s,
the appearance of safety analysis codes of nuclear facilities
boosted the search on accuracy and expanded the range of
water and steam properties. Then, the IAPWS new standards
leveraged data and technological advances towards new for-
mulations of thermodynamic properties [4].
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Artificial neural networks are being extensively used for
predicting the 10 thermodynamic and transport properties
mentioned above. Artificial neural network (ANN) is an ad-
vanced mathematical tool which determines the network out-
put based on available experimental information. It also im-
plies the mathematical function approximation for any linear
and nonlinear systems [3, 5].

Gibbs phase rule allows one to determine the number of
degrees of freedom or variance of a system. This is useful for
interpreting phase diagrams.

F = 2 + C − p, (1)

where F is the number of degrees of freedom, C is the num-
ber of chemical components and p is the number of phases in
the system. The number two is specified because this formu-
lation assumes that both p and T can be varied [6]. According
to Eq. (1) in the two-phase region, corresponding to the satu-
ration curve in the (p−T ) diagram, the thermodynamic prop-
erties of water and steam depend on a single state variable,
temperature in our case. The range of prediction is valid along
the entire vapor-liquid saturation line from 273.15K to the
critical temperature Tc, i.e., 273.150K ≤ T ≤ 647.096K [4].

The training of neural network is carried out by presenting
a series of input data and target output values using experi-
mental database including the entire range of validity where
temperature is the single input parameter [4, 7–11].

II. ARTIFICIAL NEURAL NETWORKS APPROACH

Neural networks operate as a black box model requiring
no detailed information about the system. It is an advanced
mathematical modeling procedure inspired by biological neu-
ron systems. The ANN approach seems to be completely suit-
able to the problems where the relations between variables are
not linear and complex. In a multi-layer structure (Fig. 1), the
neurons are grouped into layers, a layer of input neurons, a
layer of output neurons and one or more hidden layers which
are made up of many interconnected neurons.

Fig. 1. (Color online) Structure of the ANN.

The normalization of values is a crucial step in the ANNs.
The input values to the ANN may differ by several orders

of magnitude, which may not reflect the relative importance
of the inputs determining outlet thermophysical and transport
properties. To this aim, the input data are normalized within
the range of [−1, 1] using a mapminmax algorithm, given by
Eq. (2), to normalize the maximum and minimum values of
each row. Against the output variables are normalized by log
function [12].

y =
(ymax − ymin)(x− xmin)

xmax − xmin
+ ymin. (2)

After examining a considerable number of differently
structured neural networks, the adequate ANNs selected in
this paper have a single hidden layer with 20 neurons and an
output layer with 10 neurons. The hidden layer has a tansig
transfer function. The output layer has a purelin transfer func-
tion. Typical structure of the ANN is shown in Fig. 1. Single
input variable (T : temperature) is the input, whereas 10 ther-
modynamic and transport properties of the density, specific
heat, dynamic viscosity, thermal conductivity, and speed of
sound, on saturated liquid and saturated vapor, are considered
as the output variables.

Each neuron sums the product of each connection weight
(wjk) from a neuron (j) to the neuron (k) and input (xj), and
the additional weight called the bias to get the value of sum
for the neuron. The ith neuron has a summer that gathers its
weighted input wij · xj and the bias bi to form its net input
Pi [3].

Pi =

n−1∑
j=1

wijxj − bi, (3)

where wij denotes the strength of connection from the jth in-
put to the ith neuron, xj is the input vector; bi is the ith neu-
ron bias. An activation function F (Pi), the sigmoid function,
is used to calculate the neuron output given the set of neu-
ron inputs. To find suitable ws and biases for each neuron,
a process training is essential; it is the first step to build an
ANN. Training means that the weights are corrected to pro-
duce prespecified (“correct”, known from experiments) target
values, and the training requires sets of pairs (XS, YS) for
input: the actual input into the network is a vector (XS), and
the corresponding target is labeled (YS) after successful train-
ing. When correct values of YS for each vector of XS from
the training set are obtained, it is hoped that the network will
give correct predictions of Y for any new object of X accord-
ing to the ANN model fundamentals and with the use of more
data for training the network, better result would be obtained.
The most utilized training method for multilayered neural net-
work is called back propagation, where Levenberg-Marquardt
(LM) is applied which is considered the most efficient algo-
rithm in terms of speed and memory usage [13].

The number of observed data used in the ANN is 377 which
are divided into three sections: the training set (275 data), test
set (53 data) and validation set (49 data). Training, test and
validation subsets of the ANN are obtained as selecting 72%
of the dataset as training, 14% of the dataset as test and 14%
of the dataset as validation subsets.
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The differences between observed and predicted values are
filtered back through the system and is used to adjust the con-
nections between the layers, thus performance improves. The
coefficient of root mean square error (RMSE) is the main cri-
terion to evaluate the performance of ANN, which is defined
as follows [3, 5]:

RMSE =

[
1

n

n∑
i=1

(
yi − yt

i

)2]1/2
. (4)

Statistical quality of the ANN for the training, test and
validation sets is evaluated using the squared correlation
coefficient R, absolute error AE and average absolute error
AAE,

R = 1−
∑n

i=1 (yi − yt
i)

2∑2
i=1 (yi − y0)

2 (5)

with

y0 =
1

n

n∑
i=1

(
yi − yt

i

)
, (6)

AEi =

[
|yt

i | − |yi|
|yt

i |

]
× 100, (7)

AAE =
1

n

n∑
i=1

AEi, (8)

where yi represents either the ith trained, test or validation
output value and yt

i is the corresponding target value, with n
being the number of input vectors. The results are summa-
rized in Table 1.

Observed and predicted (dynamic viscosity on saturated
vapor as example) breakthrough curves shown in Fig. 2 in-
dicate that the ANN describes the experimental data well.

Seen to the modeling performances, the general model ob-
tained from the ANN belonging to all of the properties of
water and steam was implemented in UDF that compiled and
hooked in the solver ANSYS-FLUENT. Figure 3 shows the
incorporation of UDF into the solver of a group of 8 prop-
erties (density, dynamic viscosity, thermal conductivity and
speed of sound on saturated liquid and saturated vapor) and
a group of 2 properties (specific heat on saturated liquid and
saturated vapor). The UDF written in C++ is a routine which
can be dynamically linked with the solver FLUENT and pro-
grammed by the user.

III. CFD CALCULATIONS WITH DEVELOPED UDF

A. Benchmark case

The proposed benchmark exercise, experimentally studied
by Bartolemei and Chanturiya [14], is upward flow of sub-
cooled water through a heated vertical tube ofΦ15.4m× 2m.

Fig. 2. (Color online) Comparison of target and ANN predicted val-
ues for dynamic viscosity on saturated vapor.

As shown in Fig. 4, the operating pressure is 4.5MPa.
The subcooled water, with the subcooling of 58.2K, en-
ters from the bottom side and travels upwards through the
tube. The heat flux applied uniformly on the tube surface
is 0.57MW/m2. The inlet mass flux is 900 kg/(m2 s). The
available experimental data include temperatures along the
tube wall and axis, the bulk liquid temperature, and the cross-
sectional averaged vapor volume fraction along the tube. The
wall boiling is in the nucleate boiling regime [15, 16].

Parametric study is performed to investigate the effect of
the developed UDF as summarized in Table 2.

B. Wall boiling model

In the nucleate subcooled boiling in a heated tube, the wall
heat is partially used to form bubbles and the remaining por-
tion is transferred to the liquid. The heat transfer from the
wall in the vicinity of a nucleation site occurs during two dis-
tinct periods: the bubble growth time and the waiting time.
According to the RPI, the total heat flux from a wall to liquid
is partitioned into three parts [2, 17]

q̇wall = q̇C + q̇Q + q̇E, (9)

where q̇C is the single-phase convective heat flux, q̇Q is
quenching heat flux transferred to the liquid phase during the
waiting time, and q̇E is the heat flux associated with phase
change, i.e., evaporation.

q̇C = hc(Tw − Tl)(1−Ab), (10)

where hc is the liquid phase heat transfer coefficient; Tw and
Tl are the wall and liquid temperature near the wall, respec-
tively; and Ab is the portion covered by nucleation bubble.

q̇Q =
2kl√
πλlT

(Tw − Tl)Ab, (11)
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TABLE 1. Statistical performance of the trained ANN
Thermodynamic and transport properties Best linear fit R RMSE AEmax (%) AAE (%)
Density(liquid) Y = X − 0.03100 1 0.1936 0.2395 0.0681
Density(vapor) Y = X − 1.20000 1 0.3143 0.6419 0.1518
Specific heat(liquid) Y = X + 0.02500 1 0.3906 3.2169 0.3598
Specific heat(vapor) Y = X + 0.01600 1 0.2513 2.4516 0.53
Dynamic viscosity(liquid) Y = X − 0.00800 1 0.0881 1.0165 0.2498
Dynamic viscosity(vapor) Y = X − 0.00018 1 0.0019 2.0948 0.1941
Thermal conductivity(liquid) Y = X + 0.39000 1 0.0592 1.2867 0.2124
Thermal conductivity(vapor) Y = X + 0.00150 1 0.0505 0.6982 0.2713
Speed of sound(liquid) Y = X − 0.00970 1 0.0192 0.8621 0.1042
Speed of sound(vapor) Y = X − 0.00370 1 0.0071 0.1805 0.0328

TABLE 2. Base case values
Parametersa Value
Length (m) 2
Radius (mm) 7.7
Operating pressure (MPa) 4.5
Inlet mass flux (kg/(s m2)) 900
Heat flux (MW/m2) 0.57
Inlet temperature (K) 473.15
Inlet subcooling (K) 58.2
a Wall, stainless-steel; fluid, H2O

where kl and λl are heat conductivity and diffusivity in the
liquid phase and T is the period of bubble detachment.

q̇E = VdNwρvhfvf, (12)

where Vd is the volume of the bubble based on the bubble
departure diameter, Nw is the active nucleate site density, ρv
is the vapor density, hfv is the latent heat of evaporation, and
f is the frequency of bubble departure.

Equations (9)–(12) require closure parameters with empir-
ical relationship as frequency of bubble departure, bubble de-
parture diameter, nucleate site density, etc.

C. UDF-RPI model validation

As the problem formulation is axisymmetric, the domain
simulated is only a 2D slice with width equal to the tube
radius. The code manual recommends using a quadrilat-
eral computational mesh for Eulerian multiphase model, after
several attempts to find the best computational meshes, we
adopted grid with 80 uniform radial elements and 1000 uni-
form axial elements. Finer mesh density in a contact region
(near the heated wall) to provide a better distribution of local
flow parameters and to achieve a stable solution.

To ensure a fully-developed profile of velocity magnitude
and turbulence quantities at the inlet, the outlet profiles of
these quantities generated for a simulated flow field without
boiling (single phase) will be used as inlet information to the
boiling (multiphase) simulation.

The Eulerian-RPI method, which allows in FLUENT the
modeling of multiple separate, yet interacting phases, is em-
ployed to predict the distribution of the local flow parameters,

TABLE 3. Input parameters of subcooled nucleate boiling model
Input Value

Solver Time Steady
Type Pressure based
Velocity formulation Absolute
2D space Axisymmetric

Models Energy Active
Viscous RNG k-ε
Near wall treatment Enhanced
Multiphase Eulerian
Drag Ishii
Lift Moraga
Turbulent dispersion Lopez-De-Bertodano
Turbulence interaction Toshko-Hassan
Heat transfer Ranz-Marshall
Interfacial area Ia-Symmetric
Bubble diameter Sauter-Mean
Mass transfer RPI boiling

i.e., the vapor volume fraction, the bubble diameter and liq-
uid temperature. The turbulence phenomena are described
by a classical Re Normalisation Group (RNG) k-ε model in
combination with enhanced wall treatment for the near-wall
treatment. Value of y+ = 5 is considered reasonable for the
enhanced wall treatment approach selected. See Table 3 for a
more detailed list of input parameters and Table 4 for correla-
tion of the boiling model used in benchmark case [18].

The saturation temperature at selected pressure is
530.55K, the subcooled flow boiling model water properties
are assumed to vary with temperature. It is technically part of
the UDF we developed. That is the aim of this work.

The governing equations are non linear and several itera-
tions of loop must be performed before a convergent solution
is obtained. For the numerical accuracy, the first order up-
wind scheme is used for spatial discretization of set of gov-
erning equations. As the numerical scheme employed is cou-
pled with volume fractions, a low courant number of 10 can
be used to achieve faster convergence.

IV. RESULTS AND DISCUSSION

To validate the proposed UDF in conjunction with RPI
wall boiling model, comparisons were made among the
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Fig. 3. (Color online) Developed UDF into CFD solver ANSYS-FLUENT. (a) Group of 8 properties; (b) Group of 2 properties.

RPI model, the RPI+UDF model, and experimental data
of Bartolomei and Chanturiya for a heated vertical tube
at 4.5MPa [14]. The two models were with defining
solution-dependent material properties as piecewise-linear
functions of temperature using two data points at 473.15K
and 543.15K. Figure 5(a) shows that the proposed UDF-RPI

axial vapor volume fraction distribution agrees well with ex-
perimental data [14]. Idem for the liquid temperature profile
along the tube. Figure 5(b) shows that the proposed UDF-
RPI is in good agreement with the experimentally measured
axial liquid temperature distributions. A comparison of the
predictions with experimental data is demonstrated.
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TABLE 4. Input parameters of subcooled nucleate boiling model
Bubble departure diameter Frequency of bubble departure Nucleation site density Area influence coefficient
Tolubinski-Kostanchuk Cole Lemmert-Chawla Delvalle-kennink

Fig. 4. (Color online) Geometry and flow conditions.

Fig. 5. (Color online) Comparisons of axial vapor volume fraction
profile (a) and axial liquid temperature (b).

Parallel to works devoted to axial profiles of vapor vol-
ume fraction and liquid temperature, the radial distribution
at various axial locations along the tube was evaluated. Fig-
ure 6 shows the radial profiles of vapor volume fraction and

Fig. 6. (Color online) Profiles of vapor volume fraction (a) and liq-
uid temperature (b) at 5 locations along the tube.

liquid temperature at 5 locations along the tube, for the pro-
posed UDF in conjunction with RPI wall boiling model [19].
In Fig. 6(a), boiling is concentrated near the heated wall
for the flow regime considered here. It is seen that the va-
por volume fraction is substantially higher adjacent to the
wall and decreases towards the center. Radial temperature
profiles at 5 locations are shown in Fig. 6(b). The ther-
mal non-equilibrium is evident. There are large tempera-
ture differences between the center and wall of the pipe at
z = 1.1m, where bubble production starts close to wall while
the center temperature is below the saturation temperature.
Non-equilibrium conditions decrease along the pipe and a
radially uniform temperature distribution is reached around
z = 1.7m.

As a consequence of the comparison of the present study,
it is clear that the case of UDF in conjunction with RPI wall
boiling model, based on artificial neural networks is rea-
sonable. This demonstrates the strong non-linearity of the
forms of the thermophysical properties of water and steam of-
ten requires polynomial interpolations for defining solution-

040601-6



SIMULATION OF NUCLEATE BOILING . . . Nucl. Sci. Tech. 26, 040601 (2015)

dependent material properties, what makes the difference
between the two models as compared to the experimental data
of Bartolomei and Chanturiya, as shown in Fig. 5.

V. CONCLUSION

This work is focused on the numerical study of nucle-
ate subcooled boiling in a heated tube using RPI Wall boil-
ing model implemented in the solver ANSYS-FLUENT ver-
sion 14.5.0 in conjunction with the developed UDF based on
artificial neural networks that calculate the thermodynamic
and transport properties on saturated liquid and saturated va-
por of the water assumed to vary with temperature. The val-
idation of the results has been made with the experimental
data performed with the baseline case conditions. The re-
sults demonstrate that the RPI Neural-UDF method is able
to predict reasonably well the vapor volume fraction distri-
butions and liquid temperature profile in the heated vertical

tube. The computed profiles of the vapor volume fraction
and liquid temperature are in good agreement with available
experiments. We remind that the maximum absolute error
predicted by the artificial neural networks is around 3%. The
ANN model exhibited a great potential in prediction of wa-
ter and steam properties with the highest R and lowest RMSE
values.

The developed UDF gives a simple and fast method to cal-
culate water and steam properties depending on the tempera-
ture, and the present model correctly represents the nucleate
boiling under pressurized conditions.
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