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The properties of color-flavor locked strange quark matter in an external strong magnetic field are investigated
in a quark model with density-dependent quark masses. Parameters are determined by stability arguments. It is
found that the minimum energy per baryon of the color-flavor locked (MCFL) matter decreases with increasing
magnetic-field strength in a certain range, which makes MCFL matter more stable than other phases within a
proper magnitude of the external magnetic field. However, if the energy of the field itself is added, the total
energy per baryon will increase.
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I. INTRODUCTION

Strange quark matter (SQM) is an interesting topic [1] not
only because of its great theoretical significance, but also its
many applications, e.g., in studying quantum chromodynam-
ics (QCD) phase diagrams [2–6], properties of strangelets [7,
8], and the structure of compact stars [9, 10], etc. In 1984,
Witten conjectured that quark matter with strangeness might
be the true ground state of QCD [11]. Soon after Witten’s
conjecture, Farhi and Jaffe studied the stability of SQM with
the conventional MIT bag model and found that SQM is ab-
solutely stable around the normal nuclear density for a wide
range of model parameters [12]. Since then, SQM has be-
come a main topic in a number of meaningful works [13–20].

It has been demonstrated that SQM at high density may be
in the color-flavor locked (CFL) phase where quarks with dif-
ferent color and flavor quantum numbers form Cooper pairs
with a large binding energy [21]. It is, thus, possible that CFL
matter, rather than nuclear matter, may be the ground state of
strange quark matter at high density. Therefore, a compact
star is suggested to include color superconducting quark mat-
ter in its inner core [22].

It is generally believed that properties of quark matter have
been strongly affected in the presence of a strong magnetic
field [23, 24]. A strong magnetic field widely exists on
the surface of stars. The observed magnetic field strength
on the surface of pulsars could be in the order of 1012–
1013 G. And the magnetic-field strength on the so-called
magnetars could be in the order of 1014–1015 G or even
higher [25, 26]. In fact, the biggest magnetic field that can
be sustained by strange stars was estimated to be as large as
1.5× 1020 G [27]. Although the origin of the strong magnetic
field is not completely clear and still under active investiga-
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tions, some ways to understand its existence are avaible, e.g.,
the amplification of the relatively small magnetic field during
the star’s collapse with magnetic flux conservation [28],and
the magneto-hydrodynamic dynamo mechanism with large
magnetic fields generated by rotating the plasma of a pro-
toneutron star [29]. Furthermore, noncentral high-energy
heavy-ion collisions could generate intense magnetic fields
as high as about 1019 G [27], corresponding to eBm ∼ 6m2

π ,
where e is the fundamental electric charge and mπ is the pion
mass. It is therefore necessary to study the properties of CFL
in the presence of an external magnetic field.

In past years, magnetized strange quark matter (MSQM)
and CFL matter have been studied with many phenomeno-
logical models, e.g., the bag model [30], the Nambu-Jona-
Lasinio (NJL) model [31–36], and the mass-density depen-
dent model [37, 38], etc. The MCFL matter has a wide
range of model parameters characterized by the so-called sta-
bility window [39], and has also been studied in the NJL
model [40–44], as well as in the quasiparticle model [45, 46].

As is well known, particle masses vary with environment,
i.e., they depend on density or chemical potential. The equiv-
particle model [1, 2] takes this effect into account by density-
dependent quark masses. In recent years, this model has been
extensively applied to study the properties of SQM [1, 15, 47–
55]. In this paper, we extend it to investigate the properties of
CFL matter when a strong magnetic field appears. It is found
that MCFL matter is more stable than the other phases within
a proper magnitude of the magnetic field. At a fixed density,
the energy density of MCFL matter varies with the magnetic
field strength. At Bm ≥ 1019 G, the energy per baryon, pres-
sure, and quark chemical potentials get smaller because the
quantum number of the corresponding Fermi momentum ap-
proaches to zero.

This paper is organized as follows. In Section II, we give
the thermodynamic formulas used for the study of MCFL
matter in the equiv-particle model with density-dependent
quark masses. Then we present the numerical results and dis-
cussions in Section III. Section IV is a short summary.
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II. THERMODYNAMIC TREATMENT

Our starting point is the thermodynamic potential density
of a free-particle system, i.e.

Ωf =
∑
i

2gi
(2π)3

∫ (√
p2 +m2

i − µi
)

d3p, (1)

where the summation index, i, goes over u, d, s quarks and
electrons, mi is the corresponding particle mass, µi is the
chemical potential, gi is the degeneracy factor with a value of
3 for quarks and 1 for electrons, while the degeneracy due to
spin has been denoted by a factor of 2.

In the case of CFL phase, due to the energy gap, ∆, de-
termined by solving the gap equation, a new term should be
added to the above expression. The thermodynamic potential
density of CFL matter is then

ΩCFL =
∑
i

2gi
(2π)3

∫
(εi − µi) d3p− 3∆2µ̄2

π2
+B, (2)

where εi =
√
p2 +m2

i is the dispersion relation of a free par-
ticle with a mass of mi, µ̄ = (µu +µd +µs)/3 is the average
of the quark chemical potentials. The second term is from the
pairing contribution, and the last term, B, is the famous MIT
bag constant to take the vacuum energy into account.

To consider the effect of a magnetic field, we assume a
constant magnetic field with a strength of Bm along the z
axis. Due to Landau diamagnetism, the single particle energy
spectrum can be written as

εi,l =
√
pz2 +mi

2 + 2 |qi|Bm[l + 1/2− sgn(qi)S], (3)

where pz is a component of the particle momentum along the
direction of the magnetic field, qi is the electric charge of
quarks when qu = 1/3, qd = qs = −1/3, qe = −1, l =
0, 1, 2, . . . is the principal quantum number for the allowed
Landau levels, and S = ±1/2 refers to spin-up and spin-
down states, respectively. The sign function ‘sgn’ equals 1
with a positive argument and −1 with a negative argument.

For the sake of convenience, one normally sets ν = l +
1/2 − sgn(qi)S, where ν = 0, 1, 2, . . . . The single particle
energy becomes

εi,ν =
√
p2z +M2

i,ν , (4)

where Mi,ν ≡
√
m2
i + 2ν |qi|Bm.

The integration over the px–py plane in the momentum
space should be replaced by∫ ∞

−∞

∫ ∞
−∞

dpxdpy −→ 2π |qi|Bm

∑
ν

(2− δν0). (5)

After this substitution, Eq. (2) becomes

ΩMCFL =
∑
i

νmax∑
ν=0

fi,ν
2

∫ pi,ν

0

(εi,ν − µi)dpz

−3∆2µ̄2

π2
+B, (6)

where we have used the notations:

pi,ν ≡
√
µi2 −M2

i,ν , fi,ν ≡
gi |qi|Bm

4π2
(2− δν,0). (7)

The upper bound νmax of the summation index ν in Eq. (6)
is

νmax ≡ int
(
µi

2 −m2
i

2 |qi|Bm

)
, (8)

where the function int(x) means taking the integer part of its
argument x.

After carrying out the integration in Eq. (6), we have
the thermodynamic potential density in the conventional bag
model

ΩMCFL = −
∑
i

νmax∑
ν=0

fi,ν

[
µi

√
µi2 −M2

i,ν

−M2
i,νarcsh

(
µi
Mi,ν

)]
− 3∆2µ̄2

π2
+B. (9)

To include medium effect, the quark masses should be den-
sity/chemical potential dependent. In the chemical potential
dependent case, one can use the quasiparticle model, as has
been done in Ref. [45]. In the density-dependent case, the
actual chemical potential, µi, should be replaced with an ef-
fective chemical potential, µ∗i [1], i.e.

Ω0 =
∑
i

Ωi −
3∆2µ̄2

π2
+B, (10)

where µ̄ is now understood as the average of the effective
chemical potentials, and Ωi is connected to the effective
chemical potentials by

Ωi = −
νmax∑
ν=0

fi,ν

[
µ∗i

√
µ∗i

2 −M2
i,ν −M

2
i,νarcsh

(
µ∗i
Mi,ν

)]
.

(11)
All other thermodynamic quantities can be derived from

Ω0. Specially, the particle number density is given by ni =
−∂Ω0/∂µ

∗
i , giving

ni =
gi |qi|Bm

2π2

νmax∑
ν=0

(2− δν0)
√
µ∗i

2 −M2
i,ν +

2∆2µ̄

π2
. (12)

The energy density for the MCFL matter is then

EMCFL = Ω0 +
∑
i

µ∗ini. (13)

Upon application of Eqs. (10)–(12), we have

EMCFL =
∑
i

gi|qi|Bm

4π2

νmax∑
ν=0

(2− δν0)

[
µ∗i

√
µ∗i

2 −M2
i,ν

+M2
i,νarcsh

(
µ∗i
Mi,ν

)]
− 3∆2µ̄2

π2
+B. (14)
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Because the quark masses are density dependent, the actual
chemical potential is generally not equal to its effective one.
In fact, they are linked by

µi = µ∗i + µI, (15)

where µI is due to the density dependence of the quark
masses. Its explicit expression is obtained by applying the
fundamental differential equality dEMCFL =

∑
i µidni with

Eqs. (10)–(15), giving

µI =
∑
j

∂Ω0

∂mj

dmj

dni
, (16)

= −
∑
j,ν

gj |qj |BmD

18π2n4/3
(2− δν0)mjarcsh

(
µ∗j
Mj,ν

)
.(17)

Because electrons do not participate in strong interactions,
their actual chemical potential is equal to the effective one,
i.e., µe = µ∗e .

Due to the external magnetic field, the longitudinal pres-
sure and transverse pressure become different, i.e.

P‖ = −Ω0 +
∑
i

µIni (18)

and

P⊥ = −Ω0 +
∑
i

µIni −MfBm, (19)

where P‖ is the total parallel pressure and P⊥ is the transverse
pressure. The system magnetization is given by

Mf = − ∂Ω0

∂Bm
= −

∑
i

(
Ωi
Bm

+
∂Ωi
∂Mi,ν

dMi,ν

dBm

)
. (20)

Upon application of Eqs. (10), (11), and (20), we have the
following explicite expressions

P‖ = −
∑
i

gi |qi|Bm

4π2

νmax∑
ν=0

(2− δν0)

×

[
− µ∗i

√
µ∗i

2 −M2
i,ν +

(
M2
i,ν +

2

3

D

n1/3
mi

)

× ln

√
µ∗i

2 −M2
i,ν + µ∗i

Mi,ν

]
+

3∆2µ̄2

π2
−B, (21)

and

P⊥ =
∑
i

gi |qi|Bm

4π2

νmax∑
ν=0

(2− δν0)

×
(
−2

3

D

n1/3
mi + 2 |qi| νBm

)
ln

√
µ∗i

2 −M2
i,ν + µ∗i

Mi,ν

+
3∆2µ̄2

π2
−B. (22)

III. THE PROPERTIES OF MCFL MATTER

In the equiv-particle model, the quark mass can be devided
into two parts as

mi = mi0 +mI, (23)

where mi0 is the quark’s current mass, and mI represents the
effect due to the interaction between quarks. In principle, the
density dependence of mI should be determined from QCD.
As mentioned before, however, there is no way to exactly
solve QCD presently. Therefore, the density dependence is
normally given phenomenologically. It can be shown that the
following parametrization is reasonable,

mi = mi0 +
D

n1/3
, (24)

whereD is a fixed constant determined by stability argument,
n is the total baryon number density, and the exponent of the
baryon number density was derived based on the in-medium
chiral condensates and liner confinement at zero temperature.
Such a form satisfies limn→0mI = ∞ and limn→∞mI = 0,
which are the requirements of quark confinement and asymp-
totic freedom.

Because weak equilibrium is always reached in SQM, rel-
evant chemical potentials satisfy

µd = µs, (25)

and

µu + µe = µs. (26)

Therefore, the effective chemical potentials also meet the
correspongding relations

µ∗u + µe = µ∗d, (27)

and

µ∗d = µ∗s. (28)

We also have the baryon number density

n =
1

3
(nu + nd + ns), (29)

and the charge density

Q =
2

3
nu −

1

3
nd −

1

3
ns − ne. (30)

The charge-neutrality condition requires Q = 0.
For a given total baryon number density of n, we can obtain

the respective µ∗u, µ∗d, µ∗s , and µe by solving Eqs. (27)–(30)
with the help of Eq. (12). The number densities nu, nd, ns,
and ne can then be obtained. The energy density is calculated
by Eq. (14), while the pressures are, respectively, obtained
from Eqs. (21) and (22) for different values ofB, D, andBm.

In Fig. 1, we give the energy per baryon of SQM, MSQM,
CFL matter, and MCFL matter, respectively, as a function of
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Fig. 1. Comparison of the energy per baryon versus the baryon num-
ber density for SQM, MSQM, CFL matter, and MCFL matter, re-
spectively. The pressure at the energy minimum is exactly zero for
each quark matter phase.

the baryon number density. Because the current mass of u/d
quarks are very small, we simply take mu0 = md0 = 0. But
for the current mass of the strange quark, we take ms0 =
80 MeV. The electron does not participate in the strong in-
teraction, its mass is very tiny, and also ignored. For conve-
nience of comparison with previous works, we take the paring
parameter to be ∆ = 100 MeV. The bag constant, B, and the
confinement parameter, D, are taken to be B1/4 = 140 MeV
and D1/2 = 120 MeV. In our calculation, we assume the
magnetic field to be constant with its direction along the z
axis. Because the system will become unstable when the
magnetic field strength is higher than 1020 G, as discussed
by Chakrabarty [23], we take the magnetic field strength to
be Bm = 1019 G. From top to bottom in Fig. 1, there are
three features. Firstly, the energy minimum (the solid trian-
gle) corresponds exactly to the zero pressure (open circle) for
each case. In fact, the exact coincidence of the lowest energy
state and zero pressure is a basic requirement of the funda-
mental thermodynamics, as pointed out in Ref. [15], and de-
rived in detail in Ref. [1]. Secondly, the energy per baryon of
CFL matter and MCFL matter is lower than that of SQM and
MSQM. So we can see that the quark pairing effect greatly
increases the stability chances of SQM. Thirdly, the energy
per baryon of MSQM and MCFL matter is lower than that of
SQM and CFL matter, respectively. We can see that the ex-
ternal magnetic field in a proper magnitude lowers the energy
per baryon through the rearrangement of the Landau energy
level of magnetized quark matter. Generally, we have the in-
equality relation of the energy per baryon as

E

n

∣∣∣∣
MCFL

<
E

n

∣∣∣∣
CFL

<
E

n

∣∣∣∣
MSQM

<
E

n

∣∣∣∣
SQM

. (31)

In Fig. 2, we give the minimum energy per baryon of
MCFL phase as a function of the magnetic field strength.
When the magnetic field strength, Bm, is small, it is obvi-
ous that the energy is nearly constant. The energy per baryon

Fig. 2. The minimum energy per baryon of MCFL matter as a func-
tion of the magnetic field strength. Relevant parameters are indicated
in the figure.

starts to decrease obviously as a function of the magnetic
field between 1018 G and 1019 G. When the magnetic field
strength exceeds 1019 G, the energy per baryon decreases
quickly. Therefore, an external magnetic field with proper
strength lowers the energy per baryon. In this regard, one
should note that the energy from the external magnetic field
was not added. Otherwise, the total energy per baryon will
increase.

There are different views on whether or not the energy con-
tribution from the magnetic field should be included. If one
would like to include the field contribution, one should know
how the quark matter produce the magnetic field. As men-
tioned in the introduction, the origin of the the strong mag-
netic field is presently not very clear, although some ways to
understand it are available. Therefore, we treat the magnetic
field as an externally forced field.

Fig. 3. The pressure in MCFL matter as a function of the magnetic
field strength at two (the solid line) and three (the short-dot line)
times the nuclear saturation density n0 = 0.165 fm−3.
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As is well known, the space becomes anistropic when an
external magnetic field is presented. To compare the mag-
nitude of the longitudinal and transverse pressures, we plot,
in Fig. 3, the P‖ and P⊥ at the given densities of n = 2n0
(the solid line) and n = 3n0 (the short-dot line) where
n0 = 0.165 fm−3 is the nuclear saturation density, as func-
tions of the magnetic field strength. The difference between
P‖ and P⊥ reflects the breaking of the rotational symmetry by
the magnetic field. We can see that the pressure stays as con-
stant when the magnetic field strength is lower than 1018 G.
When the magnetic field strength is larger than 1018 G, the
pressure anisotropy starts to become noticeable: the parallel
pressure, P‖, increases far beyond the constant value, while
the vertical pressure, P⊥, decrease from the constant value.

Fig. 4. The chemical potential of quarks in MCFL matter as a func-
tion of the magnetic field strength for n = 3n0.

In Fig. 4, the chemical potentials are shown as functions of
the magnetic field strength for n = 3n0. When the magnetic

field strength, Bm, is small, all the chemical potentials, µu,
µd, µs, and µe, are approximately constant. The chemical
potentials oscillate when the magnetic field strength is in the
range of 1018 G to 1019 G. When the magnetic field strength
exceeds a critical value, about 1019 G, the energy decreases
fast. At the range of Bm ≥ 1019 G, the chemical poten-
tials decrease with the magnetic field. This is also the reason
why the pressure oscillates and decreases when increasing the
magnetic field.

IV. CONCLUSION

We have extended the equiv-particle model with density-
dependent quark masses to the investigation of MCFL matter
in an external strong magnetic field. The exact zero pressure
at the energy minimum demonstrates the self-consistency of
our treatment. The stability property of MCFL matter is cal-
culated and compared with SQM, MSQM, and CFL mat-
ter. For a proper magnitude of the external magnetic field,
the MCFL phase is more stable than the other phases of
quark matter. The impact of the external strong magnetic
field on the properties of MCFL matter is changed by the
magnetic-field strength. When Bm ≤ 1018 G, the magnetic
field affects the properties of the system only slightly. When
1018 G ≤ Bm ≤ 1019 G, Laudau oscillation appears in the
chemical potentials, and the effect becomes obvious. When
Bm ≥ 1019 G, the maximum Laudau level νmax only takes
the lowest value, and accordingly, the effects on the chemical
potential, energy density, pressure are all dramatically large.
Importantly in this case, the minimum energy per baryon gets
smaller.

Naturally, the present study is limited in many aspects
while the quark matter field is rapidly developing [56]. There-
fore, further investigations are needed.
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