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The 252Cf source-driven verification system (SDVS) can recognize the enrichment of fissile material with the
enrichment-sensitive autocorrelation functions of a detector signal in 252Cf source-driven noise-analysis (SDNA)
measurements. We propose a parallel and optimized genetic Elman network (POGEN) to identify the enrich-
ment of 235U based on the physical properties of the measured autocorrelation functions. Theoretical analysis
and experimental results indicate that, for 4 different enrichment fissile materials, due to higher information
utilization, more efficient network architecture, and optimized parameters, the POGEN-based algorithm can ob-
tain identification results with higher recognition accuracy, compared to the integrated autocorrelation function
(IAF) method.
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I. INTRODUCTION

The nuclear materials/weapons identification system
(NMIS/NWIS) for nuclear safeguards is designed to mea-
sure the characteristics of fissile materials and infer with their
properties or purposes. One of its important functions is to
detect the enrichment of fissile materials. As we all know,
the enrichment of fissile materials is the mark used to iden-
tify whether it is civilian or military and is the sign to evalu-
ate the level of nuclear industry development. In some cases,
we need external excitation to inject neutrons into the fissile
material to cause a chain reaction of radiating neutrons and
gamma rays. Through this, we obtain the necessary infor-
mation to identify the enrichment of nuclear materials [1–4].
Active noise analysis technology based on 252Cf spontaneous
fission neutron sources has been developed in the past few
years in China [5–8]. We have designed a 252Cf source-driven
verification system (SDVS) with a parallel and optimized ge-
netic Elman network (POGEN) to identify the enrichment of
235U.

II. 252CF SOURCE-DRIVEN VERIFICATION SYSTEM

The measurement principle of a three-channel 252Cf SDVS
is shown in Fig. 1. The 1# channel is the 252Cf spontaneous
fission neutron source. It produces neutrons and gamma rays
to “excitation (drive)” fissile material (235U), causing a “stim-
ulated emission (chain reaction)” with induced neutrons and
gamma rays. These particles can be detected by the 2# chan-
nel and 3# channel. With a high-speed data acquisition card,
all detected neutron signals from the 3 channels can be trans-
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Fig. 1. Schematics of 252Cf SDVS. (a) main components of SDVS;
(b) position of 252Cf source and two detectors.

ferred into digital signals in a high-performance workstation
with and large-capacity disk array.

Three channels are placed around the fissile material, as
shown in Fig. 1(b). The distance d between the detector and
the fissile material and the angle α between detectors can be
adjusted according to the measurement requirements. Ac-
cording to the 252Cf source-driven noise analysis (SDNA) [9–
12], the SDVS calculates the autocorrelation function, cross
correlation function and auto power spectral density, cross
power spectrum density, and other parameters of 1#, 2#, 3#-
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channel signals: w, x and y, where w, x and y are the ac-
quired neutron signals by the 252Cf source (1#channel), de-
tector 1 (2# channel), and detector 2 (3# channel), respec-
tively. The SDVS uses these parameters to analyze the char-
acteristics of fissile material. Then, the enrichment of 235U
can be determined.

III. AUTOCORRELATION FUNCTION OF DETECTOR
CHANNEL SIGNAL

Here we use the signal x of 2# channel as an example.
According to the SDNA method, the autocorrelation function
of the detector channel signal can be expressed as Ref. [2, 3],

Rxx(τ) = E[x(t1)x(t2)]|τ=t2−t1 = Cxx(τ) + xx, (1)

where the autocovariance of signal x is

Cxx(τ) = ε2x

[
v0(v0 − 1) +

v0v(v − 1)

vαΛ

]
F0

2αΛ2
e−α|τ |.

(2)
and the average count rate of induced neutrons is

x = εx
v0F0

αΛ
. (3)

From the point reactor model of induced fission, the mean
252Cf source fission rate is

F0 =
αΛvF

v0
, (4)

where εx is the detection efficiency of the detector channel,
v0 denotes the mean number of neutrons emitted per source
fission, v is the expected number of neutrons emergent from
induced fission, F is the mean system fission rate, α de-
notes the prompt neutron fission-chain decay constant, Λ is
the prompt neutron generation time.

Thus, the autocorrelation function of a detector channel
signal is related to the mean system fission rate and the ex-
pected number of neutrons emergent from induced fission,
etc. Therefore, when the enrichment of 235U in fissile
material is higher, the value of autocorrelation function is
larger [10, 11]. We can use this feature to identify the en-
richment of 235U.

LetXk be the discrete expression of the signal x at the time
sequence k, N denotes the length of the measured data block
(in this work, N is 1024, the sampling interval is 1 ns). τ is
the time delay. The unbiased autocorrelation function is given
by Ref. [11–13].

Rii(τ) =
1

N − τ

N−1−τ∑
k=0

XkXk+τ . (5)

where i represents signal channal number, i.e., i = 1, 2, 3.
One example of a calculated autocorrelation function

Rii(τ) is shown in Fig. 2. It has the following properties:

Fig. 2. (Color online) One example of autocorrelation function of
2# channel.

(1) Rii(τ) is a delta function when the time delay is zero, i.e.,
τ = 0. It represents the average pulse count rate in data
blocks, which is normalized to 1.

(2) A time period in the region of 0 to 20 ns, in which there
are no correlated counts. It reflects the dead time of signal
processing electronics.

(3) A region of constant correlated counts. The autocorre-
lation function exhibits an exponential decrease. It is de-
pendent on source induced and inherent fission events and
background radiation. The region of 21 to 100 ns is a typ-
ical time interval, reflecting the characteristics of fissile
material.

(4) It is sensitive to the enrichment of fissile material. Au-
tocorrelation function increases with the enrichment of
235U, as shown in Fig. 3. In our experiments, we use
fissile materials of four different 235U enrichments. The
detailed parameters are listed in Table 1.

TABLE 1. Parameters of fissile materials

Net mass U proportion U mass 235U enrichment 235U mass
(kg) (kg) (% ) (kg)

17.520 0.99917 17.505 92.03 16.11
17.512 0.99925 17.499 87.68 15.34
17.481 0.99915 17.466 83.33 14.55
17.487 0.99920 17.473 78.98 13.80

IV. PARALLEL AND OPTIMIZED GENETIC ELMAN
NETWORK

Under normal conditions, we can calculate the integral of
autocorrelation functions over time to obtain their sensitiv-
ity coefficient for 235U enrichment, as shown in Table 2. We
can easily fit the integral value of autocorrelation and 235U
enrichment into a linear function Z = f(s), where Z is the
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Fig. 3. (Color online) The relationship between enrichments and
autocorrelation functions for 235U.

235U enrichment, s is the integral value of autocorrelation,
and the slope of f(s) is the sensitivity coefficient [14, 15].
Obviously, this kind of fit/derivation is based on ideal or
semi-ideal circumstances, which means that the fissile ma-
terial is not coated by Lead, Boracium, or other shielding
objects, most the stimulated neutrons can travel through the
highly-enriched 235U and can be detected by detectors. As
a pilot study, we think this assumption will not significantly
influence our final results. We can use this linear function
f(s) to estimate the enrichment of 235U in the fissile material,
which we call the IAF (integral of autocorrelation functions)
method for short.

TABLE 2. Integral of autocorrelation functions and sensitivity
coefficient
235U 78.98 83.33 87.68 92.03 Sensitivity
enrichment (%) coefficient
Integral of Rii(×10−2) 7.98 8.81 9.19 9.26 0.097

However, the accuracy of enrichment identification for the
IAF method will be influenced severely by the following 2
factors:

(1) The time-varying autocorrelation function is a function of
time delay. If we only refer to its integral value, we will
lose information contained in the waveform. In addition,
different time intervals have different sensitivities on en-
richment. In the SDVS, the sensitivity is mainly reflected
in the typical time interval. Therefore, direct integration
will reduce the identification accuracy.

(2) Due to the existence of statistical fluctuation, autocorre-
lation function curves overlap when the enrichment gap
is small, as shown in Fig. 3. This will impact the recog-
nition accuracy with a significant drift on enrichment. As
the integration cannot be a good solution to this problem,
the statistical fluctuation limits the enrichment resolution
of the SDVS.

Another disadvantage is that the integral value of autocor-
relation cannot directly depict the enrichment of fissile mate-
rials. We need to design an appropriate identification mech-
anism which has the ability to give us the recognition results
more directly and can be trained by the time series of autocor-
relation functions to overcome the drift caused by statistical
fluctuations. This kind of approach not only maintains the
integrity of the original input autocorrelation value, but also
take advantage of information contained in the autocorrela-
tion waveform.

In order to further improve identification accuracy and
overcome the drawbacks mentioned above, we propose a par-
allel and optimized genetic Elman network (POGEN) which
uses autocorrelation functions as the input feature vectors of
POGEN, trains input samples, and identifies the enrichment
of 235U. The POGEN is divided into four blocks as shown in
Fig. 4. The subnets block includes a parallel Elman network
whose parameters will be optimized by a genetic algorithm.
That is why the optimization block and the subnets block can
be combined together in Fig. 4.

Fig. 4. Block diagram of POGEN.

The data distribution block is responsible for the allocation
of the input autocorrelation functions to reduce the dimen-
sions of the input vectors. It contains a series of multi-point
random sampling (MPRS) operators. Each MPRS operator
connects with an Elman network node in the subnets block.
Its role is to randomly select points from the autocorrelation
function, which forms the input vector of the corresponding
node. In the new vector, the arrangement of those selected
points is still based on their time sequence. It can be proven
that the selection probability for each point is 1. Once the
points are chosen, the MPRS operator gives the node a fixed
address label of those points. Each node has a fixed address
label during the training process and the identification pro-
cess. This means the input of a node always comes from
those addresses indicated by its fixed address label. An il-
lustration of one example of MPRS is shown in Fig. 5(a),
where each MPRS operator chose 5 autocorrelation values,
connected them with one Elman node, and distributed all the
autocorrelation values into 16 Elman nodes.

The subnets block consists of a series of parallel nodes.
Each node, which can also be called a subnet, is a typical
Elman neural network [16]. These nodes are used to allocate
data so that they can train themselves in the training process
and get the identification result in the recognition process.
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Fig. 5. Schematics of parallel and optimized genetic Elman network
(POGEN). (a) The illustration of MPRS operator; (b) Illustration
of Subnets block of POGEN; (c) Architecture of one Elman neural
network node.

The number of nodes depends on the length of its input vector.
In addition, the use of multiple nodes is helpful in reducing
the uncertainty of the identification results from the dynamic
recognition process.

The architecture of a typical Elman neural network is
shown in Fig. 5(c). The Elman neural network uses a back-
propagation algorithm (BP algorithm) for weight correction
and threshold amendments [17]. As a dynamic recurrent net-
work, it can adapt to signals with statistical fluctuations. Gen-
erally, an Elman network is divided into three layers: the in-
put layer, hidden layer, and output layer. In addition, it has
a set of “context units”. There are connections between the
hidden layer and these context units, which always maintain
a copy of the previous values of the hidden units as a step de-
lay operator. In Fig. 5(c), the output vector, y(k), and hidden
vector x(k) can be represented as:

y(k) = purelin[wxx(k)], (6)

x(k) = tansig[w1xc(k) + w2u(k − 1)], (7)

where the tangent sigmoid function (tansig) and linear func-
tion (purelin) are the activation functions for the hidden layer
and output layer, respectively, and are defined as:

tansig : ψt(ω) =
2

1 + e−2tω
− 1, (8)

purelin : ψt(ω) = t, (9)

where the parameter t will be set to 1. The learning rule we
used is the error back-propagation algorithm [18].

The feedback vector is

xc(k) = x(k − 1). (10)

u(k − 1) in Eq. (7) is the input vector. The weights of the
links are w1, w2, and w3. And the thresholds are b2 and b3.

The decision-making block is responsible for the integra-
tion of recognition results from all subnets and gives the final
result. Since the all MPRS operators are the same, each El-
man network node has equal weight. Therefore, this block
averages the results from all nodes to get the final recognition
result.

However, due to the intrinsic property of the Elman neu-
ral network, each Elman node has a certain probability of
falling into a local minimum. For each Elman node, the value
of the weights and thresholds in the hidden layer and output
layer determines its fitness and performance in identification.
Since there are many nodes in this parallel Elman network,
the total probability of falling into a local minimum becomes
larger, which means it’s more likely that we cannot obtain the
best Elman network for final identification, even if they have
been trained. To solve this problem, we use a genetic algo-
rithm to optimize the weights and thresholds in each node
before the training process, what we call the genetic opti-
mization block in Fig. 4. The flowchart of this optimization
process is shown in Fig. 6. In fact, this optimization is a pre-
training process on the feedforward structure of an Elman net-
work. An individual is an array constituted by all weights and
thresholds of an Elman node. Because the genetic algorithm
has a strong search capability and a good macro-global opti-
mization capability [18–20], it is more likely that the parallel
Elman network can avoid falling into a local minimum and
get an accurate solution after the genetic algorithm shrinks
the search scope.

Through the improvements above, this network becomes
a parallel and optimized genetic Elman network (POGEN).
Theoretically, it has high information utilization, good gen-
eralization ability, and strong robustness. We should be able
to obtain better recognition results by using the POGEN to
identify the enrichment of 235U.

V. EXPERIMENTAL RESULTS AND DISCUSSION

As mentioned above, we intercept the typical time inter-
val from autocorrelation functions between 21 ns and 100 ns
in the samples. Therefore, the length of each sample is 80
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Fig. 6. Flowchart of the weights and thresholds optimization with
genetic algorithm.

points. Thus, when we set the data distribution method of the
MPRS operators to be 5-point random sampling, the number
of Elman nodes in Fig. 5(b) is 16.

The SDVS obtains autocorrelation functions from the
fissile materials of four 235U enrichments (78.98%, 83.33%,
87.68%, 92.03%) as shown in Table 1. We get 10 samples for
each enrichment. These 40 samples are shown in Fig. 7(a).
The sample numbers are in order by their enrichments from
low to high. As shown in the figure, the statistical fluctuation
causes sample aliasing. We use these 40 samples to train the
POGEN. We set the 235U enrichments in decimal form to be
training targets, such as 0.7898, 0.8333, 0.8768, and 0.9203.

Each Elman node is a three-layer network with a ‘tansig’
function in its hidden layer and a ‘purelin’ function in its out-
put layer. The number of neurons in its hidden layer is 5,
the same as in the input layer. In its output layer, there is
only one neuron whose output is the 235U enrichment. The
POGEN uses a genetic algorithm with a population of 50 and
a generation of 100 to optimize the initial threshold values

Fig. 7. (Color online) Results of identification for training sample
with POGEN. (a) is the illustration for training samples, (b) is the
identification results.

and weights between layers in each node. In our experiments,
the genetic fitness increases and the genetic error decreases
rapidly during the genetic optimization, reducing the initial
error of an Elman node to 10−2 before training. After 1500
iterations, the training was terminated when the convergence
error reached 0.001. The total time consumption of the train-
ing and genetic optimization process is about 3 minutes with
a Core Quad I7-3770 and 16G DDR3 RAM. When the train-
ing is over, all parameters of POGEN will be fixed and can
be used directly to identify enrichment, i.e., no more training
is needed.

For these 40 training samples, the identification results are
shown in Fig. 7(b). The blue line is for standard enrich-
ment and the red line is for recognition results. Although
there are some fluctuations compared to standard enrichment,
the mean square error (MSE) for the recognition results is
0.2637, which means POGEN achieves good identification
results with high precision and can be used as a good candi-
date to identify enrichment after sufficient training.
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Fig. 8. (Color online) Identification results with POGEN (a) and
IAF (b).

We use another 20 samples which are also selected from
those 4 kinds of fissile materials (5 samples on each enrich-
ment) to demonstrate our POGEN method. With the same
parameters as mentioned above, the final identification results
are shown in Fig. 8(a). Although the total identification rate is
as high as 95% , the total MSE is 0.03449, which proves that
the recognition accuracy is high and the identification results
reach a high precision. It can be seen that the identification
error is still visible, especially for the highest enrichment
(sample numbers 16 to 20). Since only 40 samples are used

as training samples and the left 20 samples are used for
identification, the trained network can not achieve the best
performance, which results in identification errors with large
fluctuation. We infer that the fluctuation in the autocorrela-
tion function of high enrichment fissile material is relatively
larger than that of low enrichment fissile material, which will
interfere in the training process and lead to more error in the
identification results. In Fig. 7(b), this relationship is rela-
tively clearer than it is in Fig. 8(a) because more samples are
used for identification. So it is intuitive that if more data are
taken into consideration, the accuracy will increase accord-
ingly. So far, we can not get more data, especially data from
different enrichments. That is why our research is just a pilot
exploration.

For comparison purposes, we also list the identification re-
sults of the IAF method with the same 20 test samples. As
shown in Fig. 8(b), this method cannot distinguish between
the enrichment of 87.68% and 92.03% (samples number 11
to 20). Its MSE is 4.4713, which is much larger than that of
the POGEN. This comparison shows that many factors will
influence the identification process. The distance between
different autocorrelation functions as a sole element is not
enough if we want to obtain good identification results with
high precision and accuracy. Although the POGEN method
can get better results due to the optimization of the genetic
algorithm and parallel Elman neural network, some key fac-
tors, such as shielding, position, and scattering, will obvi-
ously degrade the performance of POGEN. For future study,
more relatively realistic experiments and a more comprehen-
sive identification model need to be taken into consideration
in order to further improve this method.

VI. CONCLUSION

Based on the intrinsic relationship between the autocorre-
lation function and the enrichment of fissile materials, we
propose a parallel and optimized genetic Elman network in
order to further improve the identification accuracy of au-
tocorrelation functions with different enrichment 235U. The
data distribution mechanism of the POGEN improves infor-
mation utilization, while maintaining generalization ability.
The genetic algorithm optimizes the parallel Elman network
robustness. With data acquired from the SDVS system, ex-
perimental results show that the POGEN-based identification
approach achieves better recognition accuracy and higher en-
richment resolution compared to the IAF-based method. Fur-
thermore, comprehensive research on the effects of the num-
ber of Elman nodes, input vector dimensions and the time-
consumption of iteration to further improve the performance
of POGEN-based identification approaches is on the way.
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