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Adsorption of gaseous iodine-131 at high temperatures by silver impregnated alumina∗
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To prevent radioactive iodides from releasing into the environment in an accident of a nuclear power plant,
silver-impregnated alumina (Ag/Al2O3) was fabricated, and its performance of radioactive iodine adsorption
from high-temperature gas was tested. The silver loadings on alumina were obtained by ICP-OES and the texture
properties of Ag/Al2O3 were characterized by N2 adsorption-desorption. The Ag/Al2O3 was of reduced specific
surface (107.2m2/g at 650 ◦C). Crystalline phases of Ag/Al2O3 were confirmed through XRD characterization.
After calcination at 650 ◦C for 2 h, the crystalline phase of Ag/Al2O3 changed. The 131I- removal efficiency
of Ag/Al2O3 was tested at 100, 250, 350, 450 and 650 ◦C, with good decontamination factor values for the
radioactive iodine. Silver-impregnated alumina can be applied as adsorbents to remove radioactive iodine at
high temperatures in nuclear accident.
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I. INTRODUCTION

Nuclear energy has been exploited as an alternative to
maintain energy sustainability for a half century, while en-
vironmental pollution caused by nuclear power plants (NPP)
has become a worldwide concern [1, 2], especially in a sev-
er accident of NPPs [3]. In March 2011, large amounts of
nuclear dusts were released from Japan’s Fukushima Daiichi
NPPs due to failure of cooling systems in a huge earthquake
and tsunami. Due to their high mobility, the most danger-
ous nuclides released in an NPP disaster are gaseous 85Kr
and 135Xe, and volatile 131I, 129I, 134Cs and 137Cs, with ex-
tensive radioactive hazard to the public [4, 5]. Among them,
131I (t1/2 = 8.02 d) is the most harmful radionuclide because
of its large quantity of release in a nuclear disaster and rel-
atively high activities, and its high accumulation in human
thyroid and further damage to organs if ingested; whereas
129I, which decays in a half-life of 1.57× 107 a and emit-
s lower energy beta-rays, would do nearly no harm to peo-
ple [6, 7]. In early stages of the Fukushima Daiichi NPP
disaster, gaseous 131I released into the environment was es-
timated at 1.5× 1017 Bq [8–10]. Therefore, how to remove
131I is an important research subject for safeguarding NPPs
and the environment.

Great research efforts have been made to prepare adsor-
bents for 131I removal, such as carbon-based materials [11–
13], silica gel [14, 15], polymer resin [16], titanium based
materials [17–20], cyclodextrin [21], molecular sieves [22–
24], etc. Also, impregnants have been exploited to improve
performance of adsorbents for iodide removal, such as K-
I [25, 26], TEDA [27, 28] and silver salts [29]. However,
most researchers focus mainly on iodide removal from wa-
ter or gases at low temperatures. Given the fact that an NPP
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in lost-of-coolant accident is in high temperatures [4], prepa-
ration of materials for adsorbing radioactive iodides at high
temperatures is meaningful [30].

Alumina is widely applied to manufacture ceramic materi-
als and catalyst supports due to its good heat-resisting proper-
ties and large specific surface area [31–33]. In consideration
of high affinity between silver and iodide, silver based alumi-
na was exploited in this work as an adsorbent for radioactive
iodine at high temperatures.

II. EXPERIMENTAL SECTION

A. Reagents and instruments

Potassium iodate (A.R.): Shantou West Long Chemical
Co., Ltd; potassium iodide (A.R.): Beijing Tongguang Fine
Chemicals Company; Na131I: HTA CO., Ltd.; L-(+)-tartaric
acid (A.R.): Sinopharm Chemical Reagent Co., Ltd.; light
petroleum (boiling range of 30–60 ◦C, A.R.): Beijing Chem-
ical Works; N2 (high purity): Beijing AP BAIF Gases Indus-
try Co., Ltd.; nitrate silver (A.R.): Beijing Chemical Work-
s; Alumina (neutral, 100–200 meshes): Sinopharm Chemi-
cal Reagent Co., Ltd.; nitric acid (A.R.): Shantou West Long
Chemical Co., Ltd.

Tube furnace: Beijing Zhongshiyida Science and Technol-
ogy Ltd.; KL-602 micro-injection pump: Beijing Kelly Med
Co., Ltd.; D07-7B mass flow controller: Beijing Seven star
Electronics Co., Ltd.; D08-1F flow displayer: Beijing Sev-
en Star Electronics Co., Ltd.; XMT series digital display ap-
paratus: Yuyao Jindian Instruments Co., Ltd.; quartz tube
(Φ12mm × 620mm): Beijing Haiqing Photoelectric Glass
Instrument Co., Ltd.; ICP-OES (Prodigy): Leeman Labs;
XRD (X’PERT-MRD): Phlips; injector (10mL): Changzhou
Yuekang Medical Appliance Co., Ltd.; ASAP2010 acceler-
ated surface area and porosimetry analyzer: Micromeritics;
2470 WIZARD2 automatic gamma counter: Perkin Elmer;
FH463A automatic scaler: Beijing Nuclear Instrument Fac-
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tory; disposable plastic tube (WG, Φ10–12mm × 75mm):
Zhejiang Plasmed Medical Technology Co., Ltd.

B. Preparation of adsorbent

Silver based alumina was fabricated by the method of im-
pregnation. Alumina was calcined at 450 ◦C for 2 h in a
muffle furnace, and allowed to cool in a desiccator. Then,
an appropriate amount of alumina was added into nitric sil-
ver solution in a light-shading flask at 80 ◦C. After 24 h, the
as-samples were spun to dry and placed in an oven at 120 ◦C
for 2 h, before a 2-h calcination at 450 ◦C in the muffle fur-
nace. Finally the adsorbent was prepared, and Ag/Al2O3 of
different calcination temperatures are accordingly marked as
“Ag/Al2O3 (T ◦C / t h)”, where T is calcination temperature
and t is calcination time.

C. Silver loadings on alumina

Silver loadings on alumina were analyzed by inductive-
ly coupled plasma (ICP). Small amounts of the as-prepared
Ag/Al2O3 were mixed with concentrated nitric acid in a flask
for 24 h. The filtrate was gathered into a volumetric flask and
the silver loadings were confirmed about 10 wt.%.

D. Characterization of adsorbents

Texture properties of the adsorbents were checked by the
method of N2 adsorption and desorption on Micromeritics
ASAP2010 analyzer. Adsorbents were degassed in advance at
300 ◦C for 2 h. Specific surface areas of adsorbents were mea-
sured by the BET method (Brunauer, Emmett and Teller); and
the average pore volume was calculated by the BJH method
(Barrett, Joyner and Halenda).

To confirm their crystalline phases and check their heat-
resisting properties, Ag/Al2O3 of different temperatures were
characterized by X-ray diffraction (D/max-2500/PC X-ray
diffractometer, Rigaku, Japan), using Cu Kα (the XRD sys-
tem was operated at 45 kV and 40mA). The samples were
scanned in 0.01◦ steps from 2θ = 10◦ to 80◦, with the scan
rate of 5◦min−1.

E. Adsorption of radioactive iodine

1. Effect of temperature

In this section, Ag/Al2O3 and Al2O3 were tested to evalu-
ate their efficiency of 131I removal at 100, 250, 350, 450 and
650 ◦C. Before the test, adsorbents were calcined at 450 ◦C
for 2 h in the muffle furnace.

With trace amount of 131I, I2 was prepared using 2mL of
2% KIO3 and 4mL of 166 µg/mL KI (plus 1mL Na131I), with
1mL of 5% L-(+)-tartaric acid as acid medium. The I2 was

dissolved in light petroleum. The 131I radioactivity in a test
was 0.1–2.0MBq.

Fig. 1. Flow chart of the experiment.

The experimental apparatus (Fig. 1) consisted of the 131I-
injection, heating and off gas purification sections. Radioac-
tive iodine solution was injected by micro-injection pump in
2.5mL/h of injection rate. High purity N2 at a flow rate of
35mL/min was used as carrier gas. In the experiment, the
adsorbents were laterally loaded in the tube center to adsorb
131I at different temperatures. A typical test with 1 g adsor-
bents in 5mL light petroleum was done in 2 h. 13X (including
Ag/13X zeolites, less than 40 meshes) and saturated NaOH
solution were used to trap131I in the off gas [30]. After test,
the spent adsorbents were imbedded in the disposable plastic
tubes to detect radioactivity on the gamma counter. The de-
contamination factor were calculated by DF = (A+B)/B,
where A is the radioactivity of spent adsorbents and B is
the summation of radioactivities of the off gas purification
columns. The DF values were normalized to lgDF/g.

2. Effect of I2 concentration

To study whether I2 concentration would influence 131I-
adsorbing performance of adsorbents, the KI concentration
used as the source to produce iodine, was increased to
332 µg/mL, other details were the same as above.

3. Effect of N2 flow rate

Considering that the flow rate of carrier gas may affect 131I
removal, N2 flow rates of 15–75mL/min were used to mea-
sure the removal efficiency of adsorbents at 250 ◦C. Other
details were the same as above.

4. Effect of adsorption time

To check time-depenence of the interaction between
Ag/Al2O3 and iodine, DF values in interaction durations
of 30–180min were measured at 100 ◦C and 450 ◦C under
the N2 flow rate of 35mL/min. Iodine (dissolved in light
petroleum) produced by the KI (166 µg/mL, Na131I-included)
was kept in a glass container. The amount of Ag/Al2O3 is
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about 1 g. As an example, the DF value of 30-min time
point was measured as follows. Iodine dissolved in light
petroleum was constantly injected by the micro-injection
pump at 2.5mL/h for 30min, and radioactivity of the ad-
sorbed 131I was measured to calculate the DF values.

III. RESULTS AND DISCUSSION

A. Adsorbents characterization

1. Texture properties of Ag/Al2O3

Texture properties of adsorbents and support were charac-
terized by the method of N2 adsorption-desorption at 77K.
Figure 2 shows the N2 isotherms of alumina, Ag/Al2O3
(450 ◦C/2 h) and Ag/Al2O3 (450 ◦C/2 h + 650 ◦C/2 h). The
alumina maintained a mesoporous structure, which was in
accordance with the calculation results by BJH method (av-
erage pore diameter of 4.5 nm). After loading silver on alu-
mina, the Ag/Al2O3 (450 ◦C/2 h) and Ag/Al2O3 (450 ◦C/2 h +
650 ◦C/2 h) were still of the mesoporous structure, with an av-
erage pore diameter of 5.2 and 6.4 nm (BJH method), show-
ing a little increase after silver loading. An adsorption hys-
teresis occurred when the relative pressure (p/p0) reached to
1, i.e., all N2 isotherms were attributed to Type IV.

Fig. 2. N2 adsorption-desorption isotherms of different adsorbents.

As shown in Table 1, the Ag/Al2O3 samples were of
relatively large specific surface area, being 129.1m2/g and
107.2m2/g after 450 ◦C/2 h and 650 ◦C/2 h calcinations, re-
spectively, though they were smaller than that of Al2O3.

TABLE 1. Texture properties of Al2O3 and Ag/ Al2O3

Adsorbents SBET (m/g2)
Al2O3(450 ◦C/2 h) 146.1
Ag/Al2O3(450 ◦C/2 h) 129.1
Ag/ Al2O3 (450 ◦C/2 h + 650 ◦C/2 h) 107.2

2. XRD spectra of adsorbents

Silver impregnated alumina had the characteristic
diffraction peaks of alumina from the XRD spectrum
(Fig. 3), i.e., it maintained a stable structure after silver
impregnated. To be specific, silver on alumina had nearly
no effect on the alumina structure. In the XRD spectrum
of Ag/Al2O3 after 450 ◦C/2 h calcination, the diffraction
peaks of silver particles can be seen clearly. For Ag/Al2O3
(450 ◦C/2 h + 650 ◦C/2 h), the crystalline phase of alumina
changed, and the Ag diffraction peaks indicate sintering of
the silver particles during the 2-h calcination at 650 ◦C.

Fig. 3. XRD spectra of Al2O3 and Ag/Al2O3.

B. Adsorption of radioactive iodine

1. Effect of adsorption temperature on 131I-removal efficiency

The silver-impregnated alumina performs better in 131I-
removal than alumina at the same temperatures under N2 flow
rate of 35mL/min. As shown in Fig. 4, the 131I-removal
efficiencies of both Al2O3 and Ag/Al2O3 decrease with in-
creasing temperature of adsorption. However, DF values
of the silver-impregnated alumina were 806.9 at 450 ◦C and
306.7 at 650 ◦C; while the DF values of alumina declined
rapidly from 437.8(250 ◦C) to 16.1(650 ◦C).

Despite its reduced specific surface area (107.2m2/g for
Ag/Al2O3, while 146.1m2/g for alumina), Ag/Al2O3 has
higher DF value, as the silver particles can react with iodine
from high-temperature gas to form AgI.
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Fig. 4. (Color online) Adsorption of 131I at different temperatures by
Al2O3 and Ag/Al2O3 under N2 flow rate of 35mL/min.

2. Effect of I2 concentration on removal efficiency

I2 concentrations of 166 µg/mL and 332 µg/mL were used
to study the I2 effect of dose on 131I-adsorbing performance
of the Ag/Al2O3 at N2 flow rate of 35mL/min. The results
are shown in Fig. 5. The Ag/Al2O3 was of high 131I-removal
efficiency at 350–650 ◦C under both the KI concentrations,
though the Ag/Al2O3 at I2 concentrations of 166 µg/mL per-
formed better at < 300 ◦C.

Fig. 5. (Color online) Effect of I2 concentration on 131I-adsorbing
performance of Ag/Al2O3 at N2 flow rate of 35mL/min.

3. Effect of N2 flow rate on 131I-removal efficiency

The effect of N2 flow rate on 131I-removal efficiency of ad-
sorbents was carried out at 250 ◦C, with N2 flow rate varying
from 15mL/min to 75mL/min. As shown in Fig. 6, DF val-
ues changed little in the entire range of the N2 flow rate.

Fig. 6. Effect of N2 flow rate on 131I-adsorbing performance of
Ag/Al2O3 at 250 ◦C.

4. Effect of adsorption time

The interaction between Ag/Al2O3 and iodine was studied
at 100 ◦C and 450 ◦C under N2 flow rate of 35mL/min by
measuring the 131I-removal efficiency in different durations
of the adsorption (Fig. 7). The DF value of Ag/Al2O3 in-
creased with time till 100min, where it reached to a plateau.
Therefore, the Ag/Al2O3 can achieve desirable result of 131I-
removal in adsorption time of 100min at N2 flow rate of
35mL/min.

Fig. 7. (Color online) I-131 adsorption kinetics curve of Ag/Al2O3
at 100 and 450 ◦C under N2 flow rate of 35mL/min.

IV. CONCLUSION

In this work, silver impregnated alumina was prepared
and evaluated for its removal efficiencies of radioactive io-
dine at high temperatures (100, 250, 350, 450 and 650 ◦C).
The results suggested that: alumina would perform better
for adsorption radioactive iodine at high temperatures after
silver loaded; the differences of removal efficiencies among
different flow rates of carrier gas were small. Silver impreg-
nated alumina would be applied as adsorbents to remove ra-
dioactive iodine at high temperatures during nuclear accident.
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