

NUCLEAR
SCIENCE

AND
TECHNIQUES

 Nuclear Science and Techniques 19 (2008) 74–78

————————————
* Corresponding author. E-mail address: shenliren@sinap.ac.cn
Received date: 2008-01-08

Web services interface to EPICS channel access

DUAN Lei1,2 SHEN Liren1,*
1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

2 Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

Abstract Web services is used in Experimental Physics and Industrial Control System (EPICS). Combined with

EPICS Channel Access protocol, Web services’ high usability, platform independence and language independence can

be used to design a fully transparent and uniform software interface layer, which helps us complete channel data

acquisition, modification and monitoring functions. This software interface layer, a cross-platform of cross-language,

has good interoperability and reusability.

Key words EPICS, Channel access, Web services, Middleware

CLC numbers TP273+.5, TP393

1 Introduction

Experimental Physics and Industrial Control
System (EPICS) is a set of Open Source software tools,
libraries and applications developed collaboratively
and used worldwide to create distributed soft real-time
control systems for large scientific facilities[1],
including the Shanghai Synchrotron Radiation Facility
(SSRF).

Using EPICS, with its perfect function,
development of the control system can be done in a
convenient process, and stability and reliability of the
devices can be greatly improved. However, the
developers using different platforms and languages
should possess profound knowledge on all kinds of the
development. This complicates the development
process and the source code maintenance, let alone
difficulties in high-level applications to similar
equipment.

In order to improve portability, interoperability
and reusability of high-level application in EPICS, we
decided to use some middleware platforms, i.e.
component model of Java-based J2EE (SUN),
COM/DCOM (Microsoft) and CORBA (OMG). As
each platform has its own internal protocol, many

“Information islands” will be built up. In order to
obtain a wider scope of cross-platform and
cross-language sharing, we use Web services
technology, and establish a fully transparent and
unified software interface layer on EPICS. In this
paper, we report a Web services interface to EPICS
channel access, which provides another way for
high-level application developers to access the bottom
channels.

2 EPICS channel access (CA) protocol

The EPICS control system consists of Operator
Interface (OPI), I/O Controller (IOC) and Device
Controller. A software bus between OPI and IOC, the
Channel Access (CA) protocol, is an application layer
protocol based on client/server (C/S) model, and it is
based on the TCP/IP network protocol[2]. Process
Variable (PV) is the basic unit for control. A channel is
established when PV connects to the OPI client
application by channel access protocol. The
connecting process between CA client and CA server
is shown in Fig.1[3].

The CA client sends name search requests to a
list of server destination addresses to determine the IP

No.2 DUAN Lei et al. / Web Services interface to EPICS channel access 75

address of the server on which the channels Process
Variable resides. These server destination addresses
can be IP unicast addresses or IP broadcast addresses.
If one of the servers reachable by the address list
knows the IP address of a CA server that can serve one
or more specified Process Variable, it sends back a
response containing the CA server’s IP address and
port number to the CA client. The CA client and CA
server establish a TCP, which can be reused. This
means that several PVs on the same server use the
same TCP connection.

3 Web services introduction

The main objective of Web services is to
establish a generic platform-independent and
language-independent technology layer based on
different platforms. And applications from various
platforms implement their connectivity and integration
by the technology layer. Web services solve the
problem of limited interoperability, thereby enhance
and expand functions of the distributed computing.
Theoretically, Web services allow two or more
software components to communicate with each other,
regardless of the component using whatever
technology and deploying on whatever platform. In
addition, the Web services-based applications are
easier to debug, because Web services use the
text-based communication protocol (such as HTTP),
rather than binary communication protocol used in
DCOM and CORBA. To achieve a complete Web
services system requires a series of protocols to
support. The entire Web services Technology System
protocol stack is given in Table 1. Fig.1 The search and connect procedure between CA client

and CA server.

Table 1 Web services protocols

Web services protocols based on XML(eXtensible markup language) Existing network protocols

Service workflow Service discovery/integration Service description Call service Data transmission Internet

WSFL (Web services
flow language)

UDDI (Universal description,
discovery and integration)

WSDL (Web services
description language)

SOAP (Simple object
access protocol)

HTTP, FTP, SMTP
Ipv4,
Ipv6

4 Design and implementation

4.1 System software architecture

We use J2EE as platform to develop Web services,
and choose Sun Java System Application Server as the
application server to deploy Web services. Because
Java is the main development language on server-side,
we need to use JCA (Java Channel Access)[4]. JCA is a
CA library provided to Java. It establishes the
connection to Channel Access by calling CA API, and
satisfies the demand of Java developers. Therefore, the
system calls JCA API directly to communicate with
the CA server[5]. The system software architecture is
shown in Fig.2.

Fig.2 System software architecture.

76 NUCLEAR SCIENCE AND TECHNIQUES Vol.19

4.2 Interface design

The work steps of CA protocol (here using JCA
API) are as follows:

(1) Use JCALibrary.getInstance() to initialize
CA.

(2) Use JCALibrary.createContext() to establish
context.

(3) Use context.creatChannel() to search channel,
and use context.pendIO() to do overtime processing.

(4) Do getting, setting, monitoring and other
operations through the channel.

(5) Use channel.destroy() to destroy the channel,
and use context.destroy() to destroy the context.

In order to acquire a channel’s status and
accomplish the operations through a channel, we
developed Web services interfaces as shown in Table
2[6].

Here, NetBeans 5.5 is used as the integrated
development environment, and the various Web
services interfaces will be deployed in the Sun Java
System Application Server[7]. Fig.3 shows the invoked
procedure.

Table 2 Web services interface

Interface names Interface definitions Functional description
caGetService DBR caGetService(string channel) Get PV value
caMonitorService string caMonitorService(string channel, int timeout) Monitor PV value
caPutService string caPutService(string channel, DBR value) Set PV value
caStateService string caStateService(string channel) Get channel status
caInfoService string caStateService(string channel) Get channel information

Fig.3 The invoked procedure of Web services interface.

Javax.jws.WebMethod, javax.jws.WebParam and
javax.jws.WebService are used when adding web
service operation to server’s source code in
NetBeans5.5. These packages help us to create Web
services. The following shows how to use the three
packages:
@WebService()
public class CAWebServices {
@WebMethod
public String caGetService(@WebParam(name =
"channelname") String channelname) {
// Use JCA API to get the value and return result as the

previous work steps of CA protocol
}

4.3 The synchronous and asynchronous Web
services client

We have two calling modes in the development
of Web services client:

1) Synchronous call. The service-request threads
will be waiting for request results from the server. And
the service-request threads will be in a wait state all
the time if the server processing time is too long.

2) Asynchronous call. If the server processing

No.2 DUAN Lei et al. / Web Services interface to EPICS channel access 77

time is too long, the service-request threads will deal
with other services after sending requests. And the
service-request threads will be notified to response for
the processing results after receiving Web services
results.

In actual systems, the monitoring of the PV needs
some time. Therefore we use asynchronous call to
develop the client for caMonitorService interface. At
the same time, asynchronous Web service clients
consume Web services either through the “polling”
approach or the “callback” approach. In order to
reduce network load, we are using “callback”
approach, namely, the servers notify clients only when
the value of PV changes, and return the changed value.

4.4 Tests and comparison

4.4.1 Web services tests
In order to test the performance of Web services,

we use SOATest from Parasoft Company (originally
called SOATTest). It uses WSDL, which describes the
service and notifies the address, to control visits to
Web services. The test PC is P4 2.4GHz, 512MB,
Windows XP Professional. Testing time is 10 minutes,
and the number of virtual users uses bell-type division.
The number is from 0 to 100, and then from 100 down
to 0. Web services test results is shown in Fig.4.

The test PC is not only used as server, but also to
create a large number of virtual users. From Fig.4
statistics, the average time is 2799 ms.

Fig.4 Web services test result (X axis: Tests Completion Time)
(a) and Web services test result (X axis: Virsual Users) (b).

4.4.2 Comparison between Web services interface
and JCA
In order to compare Web services interface and

JCA performance, we choose the same software and
hardware platforms, and use two PCs, PC A and PC B,
to establish the test environment. In web services test,
PC A is used to create IOC and Web services server,
while PC B is used to create Web services client. In
JCA test, PC A is used to create IOC and JCA client as
shown in Table 3.

Table 3 Software and hardware platforms

 PC A PC B
Hardware configuration P4 2.4GHz, 512MB DDR P4 1.4GHz, 384MB SDR
OS Windows XP Professional Windows XP Professional
Software development platform NetBeans 5.5 NetBeans 5.5
Web services test IOC, Web services server Web services client
JCA test IOC, JCA client

In the comparison, NetBeans5.5 is used to
develop Web services client and JCA client. Both read
100 PV through their corresponding interfaces, and
calculate the average time of reading one PV (Table 4).
Table 4 Test results

 Average time
Web services interface 0.10867s
JCA 0.06303s

5 Conclusion

With the extensive application of EPICS, the
corresponding high-level application software
becomes more and more, resulting in a lot of different
CA interfaces for various platforms and development
languages, such as ActiveX, Matlab, PHP, and other
specially designed CA interfaces. All these CA

78 NUCLEAR SCIENCE AND TECHNIQUES Vol.19

References interfaces have a certain limitations that can only be
used in one platform and language. But the emergence
of Web services provides us with a cross-platform and
cross-language method. The CA interfaces based on
Web services will enable high-level software
developers to ignore the bottom details of protocols
and choose any platform or development language.
This increases software portability and reusability.
Besides, the changes of bottom protocols or API will
not affect the upper application software.

In this paper, the design of interfaces based on
Web services provides another common channel
access approach to high-level software developers, and
helps developers in different development
environment to design EPICS high-level application.

1 EPICS home page: http://www.aps.anl.gov/epics.
2 Hill J O. EPICS R3.14 channel access reference manual.

http://www.apl.anl.gov/epics/base/R3-14/6-docs/CAref.ht
ml.

3 Evans K. Introduction to channel access clients.
http://aps.anl.gov/aod/bcda/epicsgettingstarted/developtoo
ls/introductionchannelaccess.html.

4 Java channel access home page: http://jca.cosylab.com.
5 Furukawa K, Satoh M. Mejuev I, et al. A java-based

EPICS archive viewer with SOAP interface for data
retrieval. ICALEPCS’03, Gyeongju, Korea, 2003.

6 NetBeans home page: http://ww.netbeans.org/kb.
7 Portmann G, Corbett J, Terebilo A. Middle layer software

manual for accelerator physics. LBNL internal report,
LSAP-302, 2005.

http://www.aps.anl.gov/epics
http://www.apl.anl.gov/epics/base/R3-14/6-docs/CAref.html
http://www.apl.anl.gov/epics/base/R3-14/6-docs/CAref.html
http://aps.anl.gov/aod/bcda/epicsgettingstarted/developtools/introductionchannelaccess.html
http://aps.anl.gov/aod/bcda/epicsgettingstarted/developtools/introductionchannelaccess.html
http://jca.cosylab.com/
http://ww.netbeans.org/kb

	Web services interface to EPICS channel access
	1 Introduction
	2 EPICS channel access (CA) protocol
	3 Web services introduction
	4 Design and implementation
	4.1 System software architecture
	4.2 Interface design
	4.3 The synchronous and asynchronous Web services client
	4.4 Tests and comparison
	4.4.1 Web services tests
	4.4.2 Comparison between Web services interface and JCA

	5 Conclusion

