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Abstract  In order to understand the effects of electron-phonon coupling and Coulomb interactions in angle-resolved 

photoemission spectroscopy (ARPES), a spin-1/2 Hubbard-Holstein model at half-filling is theoretically investigated 

by means of the mean field theory and classical Monte Carlo simulation method. It shows that the spectral shape of 

the one-dimensional system is significantly modified by the electron-phonon coupling and Coulomb interactions. The 

suppression of charge-density wave in one-dimensional system has been ascribed to the short-range Coulomb 

repulsion and thermal lattice fluctuations. The competition between these interactions can induce zero energy gaps in 

APPES as well as complete cancellation of charge or spin ordering. 
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1 Introduction 

Angle-resolved photoemission spectroscopy 
(ARPES) is a powerful tool to investigate structure of 
occupied electronic valence bands in solids. Being 
capable of measuring the binding energy as a function 
of given momentum, ARPES is suitable for probing 
electronic energy band structure of materials. Based on 
state-of-the-art photoemission methods on a modern 
synchrotron radiation light source, ARPES has 
become an important technique for studying electronic 
structure of solids. ARPES is ideal for investigating 
two-dimensional surface systems, with unparalleled 
flexibility of adjusting the incident photon energy at a 
high resolution of meV, i.e. the energy scale for many 
collective modes. At this resolution, fine electronic 
structures due to many-body interactions can be 
measured more precisely[1]. Based on high resolution 
ARPES experiments, novel properties have been 
discovered in strongly correlated systems such as 
superconductors and colossal magnetoresistance[2-7]. 
The studies show evidences that property of a complex 

system is governed by not only electron-electron (e-e) 
interactions but also electron-phonon (e-ph) couplings, 
as electrons near the Fermi surface are strongly 
scattered by the phonons, hence the importance of 
theoretically clarifying the main features of a complex 
system with e-ph and e-e interactions. 

It is well known that e-ph coupling plays a key 
role in solids by modifying the electronic energy band 
structures[8-10]. To treat a single e-ph coupled system, 
calculations has been carried out based on the 
perturbation theories and unitary transformation 
methods. To investigate many-electron system coupled 
with phonons, the Migdal-Eliashberg theory has been 
applied to clarify the energy band structure as well as 
charge and spin distribution. However, these theories 
are not sufficient to study all features of ARPES, 
which spans the entire momentum region from the 
Fermi region to the valence band.  

A path-integral theory was developed to study 
ARPES of many-electron systems by taking into 
account multiple scatterings of electrons by 
phonons[11]. It was found that a single Gaussian peak 
at band bottom evolved to a unique two-headed 
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Lorentzian peak at the Fermi edge. Similar results 
were obtained by using adiabatic approximation and 
classical Monte Carlo (CMC) method[12]. In the e-e 
interacting systems, a dominant incoherent component, 
and a weak coherent component as well, were found in 
ARPES by means of quantum Monte Carlo 
simulation[13]. The result is quite different from those 
based on the widely accepted one-electron band 
picture indicating importance of e-e interaction. 

Many authors have investigated ARPES in an 
e-ph coupled system or strongly correlated systems, 
but the competition between the e-e interaction and 
e-ph coupling is still an open question. In this paper, 
we investigate the ARPES in model systems with both 
interactions, and try to clarify the origin of 
charge-density-wave (CDW) gap and spin-density- 
wave (SDW) gap. A Hubbard-Holstein model is 
adopted to study the spectral behavior in the adiabatic 
limit[14], which assumes an infinite phonon mass and 
considers only the scattered electrons with the rigid 
lattice distortion. The thermal lattice fluctuations are 
taken into account by using CMC method[15]. 

2 Model and Method 

To describe the e-e and e-ph interaction, we adopt a 
Hubbard-Holstein model as follows, 
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where, c†
l,σ(cl,σ) is the creation (annihilation) operator 

of a conduction electron with spin σ(= α or β) at site l; 
and nl,σ(≡c†

l,σcl,σ) is the electron number operator; t is 
the transfer energy assumed for the nearest-neighbor 
hopping; μ is the chemical potential of electrons; the 
electrons are coupled to the dimensionless lattice 
deformation ql with an elastic constant K; the average 
electron number per site is ( / )en N N≡ , where Ne is 
the total electron number and N is the total number of 
lattice sites; g is the e-ph coupling constant; and U is 
the on-site Coulomb repulsion. 

The average of a physical quantity at finite 
temperature can be written as 
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where θ≡1/(kBT) is the inverse temperature, and 
partition function is given as 
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The operator average〈···〉is calculated on a given 
lattice configuration,  
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is the electronic Hamiltonian corresponding to a given 
lattice configuration. Assuming eigen wavefunction 
Olr(q) and eigen energy εr(q) for He, one obtains the 
spectral function as 
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where the delta function is  
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Details of the calculation have been given in a 
previous paper[12]. ARPES intensity is related to the 
Fermi function f(ω)=1/(eθω+1)

 
as follows 
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σ
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Using Eq.(6), ARPES of the systems can be 
calculated by the CMC method. The probability 
distribution of phonon configuration is created 
randomly. By the Metropolis method, each Monte 
Carlo step consists of a proposed move and an 
accept/reject procedure.  

At each randomly samples, the total energy of 
electronic part is calculated by using mean-field theory, 
which decouples the Coulomb repulsion term as 
follows, 
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where〈nl,σ〉shows the electronic density at lth site with 
spin σ. Ignore the last item of fluctuation, we can get 
the He as 
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where,〈nl,σ〉can be determined self-consistently by 
iteration method. In each step, the density of electron 
can be calculated by 
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where {El,σ} are eigen energies and {Ψl,σ} are eigen 
wavefunctions of He. The chemical potential is 
numerically determined by conservation of electrons, 
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3 Results and discussion 

The periodic boundary condition is imposed on a 
one-dimensional chain system at half-filling. The 
transfer integral t is defined as the unit of energy, and 
phonon frequency is fixed at K=0.2. In the previous 
paper[12], discussions were restricted to non half-filling 
systems with weakly and intermediately e-ph coupling. 
Since half-filled low-dimensional systems are subject 
to Peierls instability accompanied by a CDW gap at 
low temperatures, such a gap may cause extra 
complexity in ARPES near the Fermi surface. In this 
paper, a 1D chain model at half-filling is studied to 
investigate the competition between CDW and SDW 
orders in the system, where e-e and e-ph interactions 
coexist.  

To clarify the mechanism of ARPES alteration 
due to the two interactions at finite temperature, a 1D 

system with 64 sites is numerically investigated by 
Monte Carlo simulation with 105 sampling and 100 
iterations mean-filed calculation at each step to ensure 
the precision. 

Figure 1 shows ARPES intensity I(k,ω) as 
function of energy with respect to different e-ph 
coupling strengths. To examine the effect of e-ph 
coupling, the on-site coulomb interaction is switched 
off, i.e. U=0. The temperature is fixed at θ=10.0. In the 
case of weak coupling g=0.4, the spectrum at k=kF has 
a strong peak at the Fermi energy (Fig.1a). It indicates 
that the system is in the metallic phase with zero gap. 
In the case of intermediate coupling g=0.5, the peak at 
k=kF becomes broad and red-shifted (Fig.1b). A CDW 
gap has been opened at the Fermi surface with lattice 
dimerization induced by Peierls phase transition in 1D 
system. The CDW gap is enhanced as e-ph coupling 
increases (Fig.1c). It shall be noted that a CDW gap 
exists even in infinitesimal e-ph coupling in 1D system 
at zero temperature. At finite temperature, thermal 
lattice fluctuation tends to destroy CDW order and 
stabilize a metallic phase. 

 

Fig.1  ARPES intensity of 1D Hubbard-Holstein model at 
half-filling (N=64) for (a)weak, (b) intermediate, and (c) strong 
e-ph coupling. Other parameters are given as follows, θ=10, 
K=0.2, U=0.0. 

For the effect of e-e interaction, ARPESs at 
different U with strong e-ph coupling of g=0.6 are 
shown in Fig.2. As on-site Coulomb interaction U 
increases from 0.0 to 1.0, the spectrum peak at kF is 
blue-shifted, indicating a decreased gap that 
approaches to zero at U =2.0 (Fig.2c). It is evident that 
the CDW order has been destroyed by Coulomb 
interaction. Furthermore, the gap appears again in 
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spectrum indicating a SDW order at U=3.0 (even 
larger U is not discussed because the mean-field 
theory is not suitable for strongly correlated systems). 

 

Fig.2  ARPES intensity of 1D Hubbard-Holstein model at 
half-filling (N=64) for Coulomb repulsions (a) U=0 , (b) U=1.0 
(c) U=2.0 (d) U=3.0. Other parameters are given as follows, 
θ=10, K=0.2, g=0.6. 

 

Fig.3  ARPES intensity at the Fermi surface (k=kF) of 1D 
Hubbard-Holstein model at half-filling (N=64) for Coulomb 
repulsions at θ=10, K=0.2 and g=0.6.. (a) U=0.0, (b) U=1.0, (c) 
U=2.0, (d) U=3.0. 

In order to understand change of gap nearly EF, 
we plot spectral lines at k=kF in Fig.3 for different the 
on-site Coulomb repulsions. It can be seen that the 
CDW gap at Fermi surface due to e-ph coupling is 

weakened by e-e interaction. Such a gap finally 
disappears and is replaced by a new one at even 
greater e-e interactions. The new SDW gap is induced 
by on-site Coulomb interaction, enhanced by increased 
U. The peak shape shows a strong dependence on e-e 
interaction. At zero Coulomb interaction, the peak 
takes a Gaussian shape, which is induced by thermal 
fluctuation of lattice at finite temperature. The peak 
width (FWHM) increases with temperature. At finite 
U, the peak evolves gradually to a Lorentzian one, 
which is in close relation with electron scattering at 
the Fermi surface. 

The charge (spin) densities profiles are shown 
in Fig.4 for different U. The densities are the thermal 
averages for all lattice configurations, 
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Fig.4  CMC results of the charge and spin density profiles of 
1D Hubbard-Holstein model at half-filling (N=64) for Coulomb 
repulsions at θ=10, K=0.2 and g=0.6.  (a) U=0.0, (b) U=1.0, (c) 
U=2.0, (d) U=3.0. 

Figure 4a is characterized by strong CDW 
order, which is obviously induced by e-ph coupling as 
shown in Fig.3a. We noted that a perfect staggered 
order of charge density can exist in absolute zero 
temperature. The new structure in charge density in 
Fig.4a is induced by thermal lattice fluctuation. With 
increasing U, the CDW order is significantly 
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weakened while the SDW order is negligibly small 
(Fig.4b). Such a decreasing CDW order results from 
the completion between e-ph coupling and e-e 
interaction. At U=2.0, only small fluctuation can be 
observed in either order (Fig.4c). Lots of interesting 
physics may be hidden in a zero-gap ARPES due to 
the cancellation of CDW and SDW in the model 
system. We shall pay more attention to the 
competition between the e-e and e-ph interactions, and 
clarify the mechanism behind a "simple" spectrum. 
Fig.4(d) gives the results for even greater on-site 
Coulomb interaction, in which the CDW order is 
replaced by the SDW order.  

4 Conclusion 

ARPES of the half-filled 1D Hubbard-Holstein model 
under the adiabatic approximation has been studied by 
means of the CMC method and mean field theory. We 
clarify the role played by e-ph coupling and e-e 
interaction by systematic investigation of various 
parameters. It is found that the CDW gap due to e-ph 
coupling can be destroyed by thermal lattice 
fluctuation or by Coulomb interaction. The 
competition between these interactions can induce 
zero energy gaps in APPES as well as complete 
cancellation of charge or spin ordering. It is also 
observed that the shape ARPES is modified 
significantly as the system evolves from the CDW 
insulating phase to the SDW one. Since the present 
model is studied by using mean field theory, it is 
impossible to take into account spin fluctuations at 
finite temperature or many-electron scattering at the 

Fermi surface. Further studies are necessary to clarify 
the high-order electron correlations.  
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