
Lattice Boltzmann method for simulation of time-dependent
neutral particle transport

Ya-Hui Wang1 • Li-Ming Yan1 • Bang-Yang Xia2 • Yu Ma1

Received: 19 September 2015 / Revised: 4 December 2015 / Accepted: 8 December 2015 / Published online: 3 February 2017

� Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer

Science+Business Media Singapore 2017

Abstract In this paper, a novel model is proposed to

investigate the neutron transport in scattering and absorb-

ing medium. This solution to the linear Boltzmann equa-

tion is expanded from the idea of lattice Boltzmann method

(LBM) with the collision and streaming process. The the-

oretical derivation of lattice Boltzmann model for transient

neutron transport problem is proposed for the first time.

The fully implicit backward difference scheme is used to

ensure the numerical stability, and relaxation time and

equilibrium particle distribution function are obtained. To

validate the new lattice Boltzmann model, the LBM for-

mulation is tested for a homogenous media with different

sources, and both transient and steady-state LBM results

get a good agreement with the benchmark solutions.

Keywords Transient neutron transport � Lattice
Boltzmann method � Linear Boltzmann equation

1 Introduction

The neutral particle transport [1] has attracted great

attention in different fields of science [2], such as neutron

capture therapy (mainly in boron neutron capture therapy)

[3], transport of charged carriers in semiconductor devices

[4], nuclear reactor design [5], radiation protection, radio-

therapy, astrophysics, traffic flow, medical imaging,

shielding design, oil well logging and nuclear fuel transport

[6].

It is well known that the particle density can be obtained

by solving the Boltzmann transport equation (BTE) (more

popularly known as transport equation) [6]. Analogously,

the distribution of neutral particles for a determinant sys-

tem and equipment can be express with the neutron

transport equation (NTE) [7]. It has 7 independent vari-

ables, 3 for space, 1 for time, 2 for transfer direction and 1

for energy. However, it is a tough task to solve the BTE,

and researchers have changed their attentions to numerical

solution and computational techniques [8].

Several mathematical and numerical techniques have

been taken to solve the NTE [9]. For complex models, the

Monte Carlo (MC) method is widely used to simulate

particle transport process [10–15]. The deterministic finite

element analysis has been applied to solve BTE for time-

dependent and arbitrary geometry problem [16], and the

finite element method (FEM) has been used in nuclear

power reactor simulation [17]. The method of character-

istics (MOC), a numerical integration method for partial

differential equations, has been widely used for nuclear

reactor physics lattice calculation [18, 19]. As the expan-

sion of MOC, the OpenMOC code has been developed to

research the speedup computation technique and parallel

algorithms of MOC [20]. To improve the MOC efficiency,
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an acceleration method named CMFD is developed. Its

implementations in 3-D MOC simulation show that it can

reduce the iteration number and computation time [19].

The finite difference method (FDM) emerged as the sim-

plest technique to solve the BTE, but this requires fully

implicit formulation for desirable numerical stability [21].

The discrete ordinate method (SN) and spherical har-

monics method (PN) are widely used to discretize the BTE

in angle because of its simple construction, but their major

disadvantage is the unphysical oscillation [22]. Thus,

efforts have been made in developing new methods, which

include the cellar neural networks (CNN) coupled with PN

method to solve the time-independent NTE in x–y geome-

try [23]; the random variable transformation technique

(RVT) to solve the stochastic transport problem with the

continuous stochastic media [24]; the GTNEUT code,

based on transmission and escape probabilities method, to

replace the classical Monte Carlo methods [25]; the

PARAFISH to solve the second-order even-parity

scheme of the time-independent BTE with an algebraic

domain decomposition method [26]; and the quasi-diffu-

sion (QD) method to solve the neutral particle transport

problems in Cartesian x–y geometry with unstructured

quadrilateral meshes [1]. Similarly, the adaptive finite

elements for neutron transport (ADAFENT) code was

developed to solve the second-order even-parity BTE

based on the principle of K? variation [6]. A variable-

order spherical harmonics method was used to solve the

BTE [27]. Two new wavelets on the basis of Sweden’s

second-generation wavelets [28] were applied to discretize

the angular dimension of the first-order BTE [22]. Then, a

second-generation spherical wavelet method [29], was

improved into the 3-D wavelet-based method to solve the

first-order BTE [30]. A novel hybrid technique for solving

the time-dependent NTE was proposed [31], and an

expansion of the hybrid transport point kinetic model

appeared for initially critical multiplying structures [32].

Lattice Boltzmann method (LBM), developed for com-

putational fluid dynamics (CFD) originally, is used

increasingly in the field of heat and mass transfer [33–35].

It assumes that the macroscopic appearance of a liquid is

the result of collective behavior of many microscopic

particles in flow field and it is not susceptible to individual

particles. Numerical calculation of LBM is popular, with

advantages of clear physical model and background, easy

treatment of boundary condition and convenient parallel

algorithms (because of the locality of evolution equation)

[36]. LBM has been used in nuclear reactor engineering,

such as large eddy simulation of a sub-channel of a rod

bundle [37] and a two-phase flow simulation [38].

In this paper, we propose a novel lattice Boltzmann

model to solve the neutron transport problem. After the

detailed derivation of the LBM model, the neutron flux

densities in one-dimensional homogenous media with dif-

ferent sources are calculated. The time-dependent and

steady-state LBM results agree well with benchmarks and

existing results.

1.1 1-D neutron transport lattice Boltzmann model

The time-dependent linear Boltzmann equation for

mono-energetic neutral particles with an isotropic source in

homogeneous medium can be described as [9]

1

v

o

ot
þ X̂ � r~ þ

X

t

 !
w r~; X̂; t
� �

¼ Q r~; tð Þ
4p

: ð1Þ

where X̂ is the angular direction and Q r~; tð Þ is the total

source term in position r~ and time t.

For one-dimensional problem, Eq. (1) can be rewritten

as [2]

1

v

o

ot
þ l

o

ox
þ Rt xð Þ
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w x; l; tð Þ

¼ Rs xð Þ
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Z þ1
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f l0 ! lð Þw x; l0; tð Þdl0 þ q x; l; tð Þ
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where v is the velocity of neutrons emitted from the

medium; l is the direction cosine of the polar angle

(-1 B l B 1); w(x, l, t) is the transient neutron flux cor-

responding to position x and direction l; Rt(x) = Ra

(x) ? Rs(x) is the macroscopic cross section, with Ra(x)

being macroscopic absorption cross section and Rs(x) being

macroscopic scattering cross section; f l0 ! lð Þ is the

anisotropic scattering phase function; and q is the external

particle source.

To homogeneous medium, the source in each direction

is isotropic, and the neutron transport can be described as

1

v

o

ot
þ l

o

ox
þ Rt xð Þ

� �
w x; l; tð Þ ¼ St x; tð Þ; ð3Þ

where St is the total source term given as

St x; tð Þ ¼ Rs xð Þ
2

Z 1

�1

f l0 ! lð Þw x; l0; tð Þdl0 þ q x; tð Þ: ð4Þ

The anisotropic scattering can be express by a linear

anisotropic phase function f l0 ! lð Þ ¼ 1þ all0, where a

(-1 B a B 1) denoting the anisotropy scattering coeffi-

cient. Equation (4) of the source term can be written as

St x; tð Þ ¼ Rs xð Þ
2

Z þ1

�1

1þ all0ð Þw x; l0; tð Þdl0 þ q x; tð Þ:

ð5Þ

The anisotropy scattering coefficient in isotropic med-

ium equals to zero (i.e., a = 0), while a[ 0 for forward

scattering and a\ 0 for backward scattering. In this paper,

we just study the isotropic condition (a = 0). To ensure the
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numerical stability, fully implicit backward difference

scheme in time is used [39]. Then, Eq. (3) can be written as

w x; l; tð Þ � w x; l; t � Dtð Þ
vDt

þ l
ow x; l; tð Þ

ox
þ Rt xð Þw x; l; tð Þ

¼ St x; tð Þ;
ð6Þ

where w(x, l, t - Dt) is the neutron flux of the last time

step and Dt is the time step.

According to the common terminology referred in LBM,

D1QM lattice structure (Fig. 1) is used, where 1 represents

one-dimensional geometric space and M refers to the

number of lattice velocity, i.e., the number of linkages of a

lattice node. We note that this D1QM model is not the

standard D1Qq model in terms of conventional LBM, in

which the base vectors in different lengths are parallel to a

dedicated direction [40]. Equation (1) depends on not only

time and spatial coordinates, but also solid angle. This

differs greatly from flow governing equations. In order to

describe the direction characteristic of the neutron transport

process, the multi-direction definition is usually used to

discretize the angle of neutron transport equation, as SN and

PN methods. But the spatial correlation of the proposed

D1QM model in this paper is similar to the standard D1Q2

model, in which the forward and backward vectors of node

x point to node x ? Dx and node x - Dx, respectively. In
the LBM calculation, particles collide at the mesh nodes

and travel along the mesh line between nodes. All physical

information is stored at the nodes [41].

The NTE along any lattice linkage designated by the

index m can be written as

l
owm x; tð Þ

ox
þ Rt xð Þ þ Bð Þwm x; tð Þ

¼ St x; tð Þ þ Bwm x; t � Dtð Þ; ð7Þ

whereWm is the distribution function of neutronflux in themth

direction, and B = 1/(vDt). The lattice speed along the mth

lattice direction corresponding to the D1QM lattice structure

(Fig. 1) is defined as em = (Dx/lm)/Dt. Discrete Eq. (7) along
the characteristic directions and keep the right-hand side

constant, the evolution equation to Eq. (7) can be given as

wm xþ emDt; t þ Dtð Þ
¼ wm x; tð Þ þ Dt � em Rt xð Þ þ Bð Þ

�
1

1þ Rt xð ÞvDtwm x; t � Dtð Þ

�wm x; tð Þ

2

64

3

75þ Dt � emStðx; tÞ:

ð8Þ

Corresponding to standard lattice Boltzmann–BGK

equation [36], the last two terms of right side of Eq. (8) can

be treated as the collision and source terms, respectively.

So Eq. (8) can be converted to the standard lattice Boltz-

mann equation as

wm xþ emt; t þ Dtð Þ ¼ wm x; tð Þ þ Dt
~sm

weq
m x; tð Þ � wm x; tð Þ

� �

þ Dt � emSt x; tð Þ;
ð9Þ

where ~sm = 1/[Rt(x) ? B] is relaxation time of the colli-

sion process and weq
m x; tð Þ is the equilibrium particle dis-

tribution function.

Fig. 1 Schematics of the lattice

mesh used in the D1QM of

lattice Boltzmann method.

a One-sided D1QM lattice used

in the lattice Boltzmann method

with M directions.

b D1QM model with two

directions (M = 2) for one-

dimensional isotropic medium.

c Direction cosine of the polar

angle and the interval of two

approach direction
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In the LBM, information is exchanged through the

collision processes firstly. After that, the particles relax

toward the equilibrium distribution and carry information

to neighboring lattice nodes in the directions of their

characteristics. From the initial condition, the evolution

process to the steady state happens by multiple collisions

and streaming, and the collision step is highly influenced

by the relaxation time, hence an important parameter to

attain the equilibrium parameters.

In the relaxation time, the macroscopic cross section Rt

is the reciprocal of the mean free path (mfp for short, which

means the average distance traveled by a moving neutron

between successive impacts [42, 43]. In this process,

1 mfp = 1/Rt.) of neutron transport in the medium and B is

a parameter related to the time step and the velocity of

neutron released from medium. Both parameters represent

the effect of diffusion process, and relaxation time is a

measurement to the strength of diffusion process.

Comparing Eqs. (8) and (9), the equilibrium distribution

function is

weq
m x; tð Þ ¼ 1

1þ Rt xð ÞvDtwm x; t � Dtð Þ: ð10Þ

This function shows that the equilibrium state is influ-

enced by the distribution of the last time and, like the

relaxation time, by macroscopic cross section and the

velocity of neutrons released from medium.

Equation (9) is the final equation we need to solve in

numerical simulation and it is a linear equation. Because of

its simple form, Eq. (9) can be used to solve neutron

transport problem easily and to treat more complex neutron

transport process by changing its source term and initial/

boundary condition.

To calculate the neutron flux, a weighted calculation

method is considered. The neutron flux is define as

U x; tð Þ ¼
XM

m¼1

wm x; tð Þwm; ð11Þ

where wm is the weight function, in one-dimensional

problem, weight function is define as

wm ¼ Dl ¼ lmþ1=2 � lm�1=2: ð12Þ

The proposed LBM model is not restricted to 1-D neu-

tron transport problem. The multi-dimensional and multi-

group neutron transport processes can be simulated by the

similar method with more coordinate directions and more

distribution functions. Owing to the localized computa-

tional characteristics of LBM method, the parallel com-

puting can be easily realized and the efficiency can be

enhanced especially by GPU acceleration.

Then the neutron flux of each nodes U can be numerical

calculated by the following steps:

Step 1 Initialize the parameters; choose the number of

grid to mesh the computational domain;

Step 2 Define the time step and mesh size;

Step 3 Calculate the relaxation time;

Step 4 Loop at each time step:

1. Loop for each direction iterations;

(a) Calculate the equilibrium distribute functions

for each direction with Eq. (10).

(b) Implement the collision and streaming pro-

cesses for each direction with Eq. (9).

(c) Impose boundary condition on the boundary

nodes.

(d) Calculate the neutron flux with Eq. (11).

Terminate the global iteration process if the

maximum relative error of neutron flux U is

not bigger than a very small value. Else, go

back to step (a).

2. If the difference of neutron flux between previous

and present is smaller than the maximum relative

error, terminate the iteration process of time loop.

Else, update the neutron flux and go back to Step 1.

Step 5 Save the flux data for the next work.

2 Numerical results

In this section, similar example problems solved to test

hybrid method in Ref. [2] are used to validate the new

LBM method. Four neutron transport problem in finite

homogenous medium are considered. The first problem is a

one-dimensional slab with uniformly distributed source,

and the next one is a slab with localized uniformly dis-

tributed source in the central position. The third is for a

localized asymmetric uniformly distributed source, and

with the last condition, the localized asymmetric uniformly

distributed source that switch off at one mft (in this pro-

cess, 1 mft = 1 mfp/v).

To test the applicability of different medium, two types

of medium are considered. The macroscopic cross section

is Rt = 1 cm-1 for Configurations A and B. The macro-

scopic scattering cross section is Rs = 0.9 and 0.5 cm-1

for Configurations A and B, respectively.

For these simulations, the source turns on at t = 0?, and

for the first three problems it keeps for the whole simula-

tion. For the last issue, the source switches off at 1 mft.

The source remains at a constant strength level of

1.0 n cm-3 s throughout the turned on situation. The

velocity of particles released from the source is 1.0 cm/s.
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All processes have the vacuum boundary (i.e., the medium

is surrounded by a vacuum or non-reflecting region, so that

the neutron current density entered from outside equals to

zero). Equation (13) shows the homogeneous initial/

boundary conditions used in all of the following examples.

And in each simulation, the mesh step is 0.01 mfp and the

time step equals to 0.025 mft. The number of discrete

directions is M = 20. The other non-trivial numerical

parameters used in simulations are Dx = 0.001 cm,

Dt = 0.025 s, q = 1 cm-1 s-1, and the convergence cri-

terion is set to that the relative error of two iterations is no

more than 1 9 10-6, for Configurations A and B, while

H = 10 cm for Configuration A, and H = 5 cm for Con-

figuration B.

w �H=2; l[ 0; tð Þ ¼ 0;

w þH=2; l\0; tð Þ ¼ 0;

w x; l; 0ð Þ ¼ 0:

ð13Þ

2.1 Uniform volume source

This section refers to a uniform volume source prob-

lem with homogeneous conditions, and the geometry of

the uniform source is shown in Fig. 2. For Configurations

A and B, the slab thickness is 10 and 5 mfp, respectively,

and the number of uniform grid is 1000 and 500,

respectively.

The time-dependent flux driven by the uniform volume

source for Configuration A is shown in Fig. 3, where the

particle densities from the LBM at 1, 2.5, 5, 7.5 and 10 mft

are compared with the benchmark [9] results. From Fig. 3,

our model agrees well with the benchmark, and the max-

imum relative error between them is below 0.5%. To

express the process of neutron transport clearly, the tran-

sient particle densities of the first 10 mft with 0.5 mft

interval are shown in Fig. 4. At the beginning, the particle

density is close to the uniform distribution except the

regions nearby the boundary, because in the finite time

interval, the volume source and boundary leakage can

affect the finite geometric scope, i.e., 1 mft corresponding

to 1 mfp. In process of time, a parabola-like particle den-

sity profile is formed, because in the central region, more

particles are contributed from adjacent volume sources, and

in the boundary regions, more particles leak out through

the boundaries.

The particle density distribution in the medium con-

verges to steady state, as shown in Fig. 5. The lines are the

LBM results, and the symbols are the benchmark solutions

Fig. 2 Schematics for 1-D uniform source in H thick slab. Shadow

area represents the source region. The left and right side are vacuum

boundaries. H = 10 mfp for Configuration A and H = 5 mfp for

Configuration B

Fig. 3 Particle densities at various instants of mean free time within a

one-dimensional slab of Configuration A with a uniformly distributed

source. Solid points are the data of benchmark solutions from Ref. [9],

and the lines are the LBM results at 1, 2.5, 5, 7.5 and 10 mft

Fig. 4 Transient particle densities of the first 10 mft within a one-

dimensional slab of Configuration A with a uniform volume source.

The solid lines are calculated with 0.5 mft intervals from bottom to

top
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of Ref. [9]. Figure 5a shows the convergence trend at 10,

20, 30 and 40 mft. The LBM results and benchmark

solutions are consistent with each other. The steady-state

particle distribution is shown in Fig. 5b, where the LBM

results are consistent with both benchmark [9] and diffu-

sion approximation solutions [2]. Because the albedo (Rs/

Rt) is large for Configuration A, the diffusion approxima-

tion is reasonable.

To verify the generality of the LB model, the particle

densities driven by the uniform volume source of Config-

uration B are studied with the same boundary and initial

conditions as Configuration A. As shown in Fig. 6a, the

LBM results (lines) at 1, 2 and 5 mft agree well with the

transport solutions (symbols) [2]. The steady-state solu-

tions of LBM (solid line), transport solutions (solid circle)

[2], and diffusion approximation (solid triangle) [2] are

shown in Fig. 6b. The LBM results are consistent with the

transport solutions, with some deviations from the diffu-

sion approximation, which is not reasonable for smaller

albedo such as Configuration B. From Figs. 5 and 6, it can

be seen that the transient and steady-state particle densities

of Configuration B are smaller than those of Configuration

A, because more particles leak out through the boundaries

when the scattering cross section is smaller. All the relative

Fig. 5 Convergence to steady state of the particle densities of

Configuration A with a source of uniform distribution. a Converged

time-dependent results at 10, 20, 30 and 40 mft. Lines LBM results,

symbols benchmark solutions [9]. b Steady-state comparisons

between LBM (line), benchmark (solid square) [9] and diffusion

approximation (solid triangle) [2] solutions

Fig. 6 Particle densities of Configuration B with a uniform source at

1, 2 and 5 mft. a Comparisons of time-dependent particle densities

between the LBM results (lines) and the transport solutions (symbols)

[2]. b Steady-state comparisons between the LBM results (line), the

transport solutions (solid circle) [2] and diffusion approximation

solutions (solid triangle) [2]
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errors between LBM solutions and benchmark or transport

values are less than 0.5% but deviate from diffusion

approximation more especially for Configuration B,

because the diffusion approximation is not accuracy any

more in high scattering medium.

2.2 Symmetric localized source

Transient and steady-state neutron particles transport

problem with symmetric localized source are studied in this

section. The 1-D slab in thickness of H is shown in Fig. 7

(H = 10 mfp for Configuration A and H = 5 mfp for

Configuration B). The symmetric source in width of H/2 is

at the center of medium. The vacuum boundary condition

is used and the initial particle density is zero distribution.

As shown in Fig. 8, the LBM results at first 10 mft agree

well with the benchmark solutions.

Trends of the transient particle densities at the first

10 mft with 0.5 mft interval are shown in Fig. 9. For the

several lines in the bottom region, i.e., the initial mean free

times, there is a platform in the middle part with localized

source, and there are two zero-density zones in the non-

source parts nearby the boundaries, because of the effects

of source volume and boundary leakage on the local

regions. Thereafter, the particles released from the source

regions have enough time to get the boundaries, hence the

smoothness of density profiles.

The convergence trend of steady state in symmetric

localized source problem with Configuration A is shown in

Fig. 10. The particle densities in first 40 mft are shown in

Fig. 10a, with each line corresponding to a passage of

10 mft. The LBM results are consistent with the bench-

mark solutions of Ref. [9]. And the steady-state solutions

of LBM, the benchmark values [9] and the diffusion

approximations [2] are consistent with others (Fig. 10b).

The same problem of Configuration B with symmetric

localized source is simulated at 1, 2 and 5 mft. As shown in

Fig. 11a, the LBM results (lines) agree well with the

transport solutions (symbols) [2]. In Fig. 11b, the steady-

state solutions of LBM (solid line), transport solutions (solid

square) [2] and diffusion approximations (solid triangle) [2]

are compared. The LBM results are consistent with the

transport solutions, but are lower than the diffusion

approximation and higher than those in the region far from

the source region. The albedo of Configuration B is smaller,

so the diffusion approximation is not exact anymore.

For these solutions, the relative errors are less than 0.4%

between LBM results and transport values in either tran-

sient processes or steady-state conditions. And for steady-

Fig. 7 Schematics for 1-D localized symmetric source in H thick

slab. H = 10 mfp for Configuration A and H = 5 mfp for Config-

uration B

Fig. 8 Particle densities at various instants of mean free time in a 1-D

slab of Configuration A with a localized symmetric source. Solid

symbols are the data of benchmark solutions from Ref. [9], and the

lines are the LBM results at 1, 2.5, 5, 7.5 and 10 mft

Fig. 9 Transient particle densities of the first 10 mft in a 1-D slab of

Configuration A with a symmetric volume source. The solid lines

from bottom to top are calculated with 0.5 mft intervals
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state condition, the results of diffusion approximations are

different with LBM results slightly for Configuration A but

obviously for Configuration B because of the strong scat-

tering effect.

2.3 Asymmetric localized source

In this section, a non-symmetric source-driven problem

is considered, with the 1-D slab in thickness of

H = 10 mfp for Configuration A and H = 5 mfp for

Configuration B. As shown in Fig. 12, the source region in

1 mfp width is located in the left part of the medium (ex-

cept with special instructions). Figure 13 shows the time-

dependent particle densities at 1, 2 and 5 mft. The LBM

results (lines) agree well with the transport solutions

(symbols) [2].

The transient particle densities of the first 10 mft with

0.5 mft intervals from LBM are shown in Fig. 14. It is

interesting to note that the evolution of density profiles is

similar to Fig. 9, but not symmetric to the center of

localized source anymore, i.e., the particle densities in the

right side are a little larger than that of the symmetric

positions in the left side, when the time is long enough. As

the right boundary is farther from the source center, more

particles are scattered back to the source direction; whereas

the left boundary is closer to the source, more particles are

Fig. 10 Convergence to steady state of the particle densities of

Configuration A with a symmetric distributed source. a Converged

time-dependent results at 10, 20, 30 and 40 mft. Lines LBM results,

symbols benchmark solutions [9]. b Steady-state comparisons

between LBM (line), benchmark (solid circle) [9] and diffusion

approximation (solid triangle) [2] solutions

Fig. 11 Particle densities with a symmetric source of Configuration

B. a Time-dependent particle densities comparisons between the

LBM results (lines) and the transport solutions (symbols) [2] at 1, 2

and 5 mft. b Steady-state comparisons between the LBM results

(line), the transport solutions (solid square) [2] and diffusion

approximation solutions (solid triangle) [2]
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leaked out. Also, the particle density is small in the regions

adjacent to the right boundary, because optical thickness

between the source and right boundary is large, and just a

small portion of the particles can reach the boundary.

Figure 15 compares the steady-state particle density of the

LBM results (solid line) of Configurations A and B,

transport solutions (solid square) and diffusion approxi-

mation (solid triangle) [2]. In Fig. 15a, the LBM results

agree well with the transport solutions, but both of them are

a little larger than the diffusion approximation in the

localized source region, while in Fig. 15b, the LBM results

of Configuration B agree well with the transport solutions

[2], but are obviously larger than the diffusion approxi-

mation results in the localized source region, and lower

than diffusion approximation in the region near the source

region.

Finally, the asymmetric localized source switch off at

1 mft is studied using the geometry similar to Fig. 12, i.e.,

the 1-D slab thickness of H = 10 mfp for Configuration A

and H = 5 mfp for Configuration B, but the asymmetric

localized source is 1 mfp in width for both Configurations

A and B. The transient particle densities of LBM results

(lines) agree well with the transport solutions (symbols) [2]

in all domains (Fig. 16).

Like the previous cases, the relative errors are less than

0.5% between LBM results and transport values, except the

last two comparisons, with the maximum error of \1%,

since the neutron flux is very small.

3 Conclusion

A novel lattice Boltzmann model for one dimension

time-dependent neutron particle transport problem by

solving linear Boltzmann equation is proposed, and the

detailed derivation process is presented in this paper.

Typical examples of neutron particle transport in homo-

geneous medium driven by symmetric and asymmetric

source are studied. Both time-dependent and steady-state

LBM results agree well with the benchmark values in the

references. The relative error between LBM solutions and

transport values of most cases are less than 0.5%, and the

maximum error is less than 1%. Comparisons show that the

proposed LBM model is precise for neutron transport. The

LBM method will be further developed as a powerful

computational tool for neutron transport problems. This

Fig. 12 Schematics for 1-D asymmetric localized source problem

(1 mfp width, centered at x = H/4) in H thick slab. Shadow area

represents the source region, and left and right boundaries are vacuum

boundary. For Configuration A, H = 10 mfp; for Configuration B,

H = 5 mfp

Fig. 13 Particle densities of Configuration A at 1, 2 and 5 mft in a

1-D slab with a localized asymmetric source (width 1 mfp, centered at

x = H/4). Solid symbols are the data of transport solutions from Ref.

[2], and the lines are the results of LBM

Fig. 14 Transient particle densities of the first 10 mft in a 1-D slab of

Configuration A with an asymmetric localized source. The solid lines

are calculated with 0.5 mft intervals from bottom to top

Lattice Boltzmann method for simulation of time-dependent neutral particle transport Page 9 of 11 36
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method can be developed to solve 2-D and 3-D neutron

transport problems, and parallel computation of the models

can be easily realized since the strong locality of the rel-

evant variables.
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