
Optimization of a dynamic uncertain causality graph for fault
diagnosis in nuclear power plant

Yue Zhao1 • Francesco Di Maio2 • Enrico Zio2,3 • Qin Zhang1,4 • Chun-Ling Dong4 •

Jin-Ying Zhang5

Received: 4 January 2016 / Revised: 11 August 2016 / Accepted: 14 August 2016 / Published online: 2 February 2017

� Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer

Science+Business Media Singapore 2017

Abstract Fault diagnostics is important for safe operation

of nuclear power plants (NPPs). In recent years, data-dri-

ven approaches have been proposed and implemented to

tackle the problem, e.g., neural networks, fuzzy and neuro-

fuzzy approaches, support vector machine, K-nearest

neighbor classifiers and inference methodologies. Among

these methods, dynamic uncertain causality graph (DUCG)

has been proved effective in many practical cases. How-

ever, the causal graph construction behind the DUCG is

complicate and, in many cases, results redundant on the

symptoms needed to correctly classify the fault. In this

paper, we propose a method to simplify causal graph

construction in an automatic way. The method consists in

transforming the expert knowledge-based DCUG into a

fuzzy decision tree (FDT) by extracting from the DUCG a

fuzzy rule base that resumes the used symptoms at the basis

of the FDT. Genetic algorithm (GA) is, then, used for the

optimization of the FDT, by performing a wrapper search

around the FDT: the set of symptoms selected during the

iterative search are taken as the best set of symptoms for

the diagnosis of the faults that can occur in the system. The

effectiveness of the approach is shown with respect to a

DUCG model initially built to diagnose 23 faults originally

using 262 symptoms of Unit-1 in the Ningde NPP of the

China Guangdong Nuclear Power Corporation. The results

show that the FDT, with GA-optimized symptoms and

diagnosis strategy, can drive the construction of DUCG and

lower the computational burden without loss of accuracy in

diagnosis.

Keywords Dynamic uncertain causality graph � Fault
diagnosis � Classification � Fuzzy decision tree � Genetic
algorithm � Nuclear power plant

List of symbols

A Mechanism that V induces on X

B Failure type

CGNPC China Guangdong Nuclear Power Corporation

DT Decision tree

DUCG Dynamic uncertain causality graph

F Uncertainty relationship between variables

FD Fault diagnosis

FDT Fuzzy decision tree

FS Fuzzy set

FRB Fuzzy rule base

GA Genetic algorithm

NPP Nuclear power plant

r Causal relationship intensity between each

variable V and X

V Generic variable, V [ {B, X}

X Symptom

& Yue Zhao

zhaoyue0803@126.com

1 Institute of Nuclear and New Energy Technology of Tsinghua

University, Beijing 100084, China

2 Energy Department, Politecnico di Milano, 20156 Milan,

Italy

3 Chair System Science and the Energy Challenge, Fondation
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Symbols

N,k Failure type always with k = 1, B type variable

N,k Symptom, X-type variable

? Uncertainty relationship, F-type variable

C Fault class

S Symptom

r Observation vector

f Fuzzy observation vector

l Element of fuzzy observation vector

k Classification rate

a Number of symptoms needed for classification

a User-defined weight for k
b User-defined weight for a
U Objective function

Subscripts

i Number of V, i = 1, 2, …, N

j State of V

k State of X

m Number of S

N/n Number of V

Superscript
0 Derivative

1 Introduction

In recent years, fault diagnosis (FD) has become

important for safe operation of nuclear power plants

(NPPs). Fuzzy and neuro-fuzzy approaches, support vector

machines [1], K-nearest neighbors [2, 3], decision tree

(DT) and fuzzy decision tree (FDT) classification methods

[4–9] are proposed and implemented to tackle the problem.

FDT improves the DT capability by embedding fuzzy set

(FS) theory in the FD and benefits of the advantages of

both DT and FS. However, the not univocal correspon-

dence between symptoms and fault classes might challenge

the diagnosis task. Researches have been done in this area,

and FD systems like REACTOR, SINDBAD and OAS are

developed [10–13]. All of these systems focus on the static

state of NPP and method for prognostic is not mentioned.

ISACS (integrated surveillance and control system) is

developed in the OECD Halden Reactor Project with

functions including identification of disturbance, diagnosis

and prognostics [14–16]. This system mainly contains two

parts: prior diagnosis, which is model-based; and on-line

diagnosis, which is based on comparing the fault data with

those in Process and Automatics (P&A) data base. Unfor-

tunately, the prototype ISACS-1 is mainly utilized for

extensive evaluation and further progression of the system

has not been elaborated. In other FD systems, some are

based on the complete model of the industrial systems

[17–21], which is difficult to be applied on the systems

whose complete model are hard to build. While some other

systems are data mining based [19, 22], which is difficult

for NPPs because it is often difficult to obtain fault data to

train the classification model. J. Ma and J. Jiang developed

a FD system based on semisupervised classification

scheme, which was considered as a promising tool [23].

However, the model are trained by the data of normal

power plant, which may not diagnose the faults that owned

only by NPPs.

Recent works on classic uncertain artificial intelligence

methodology, such as rough set [24, 25], artificial neural

network (ANN) [26, 27], fuzzy theory [28–30], gray rela-

tional analysis [31, 32], petri nets [33, 34] and support

vector machine (SVM) [35, 36], are introduced and com-

bined for FD and prognostic in complex systems. Also,

probabilistic graphical model has become new hotspot in

this field, and the Bayesian networks (BN) model [37, 38],

Hidden Markov Models (HMM) [39–41], latent tree

models (LTM) [42] and cloud models [43] draw high

attention. BN is especially typical. It is of solid theoretical

foundation, with directed acyclic graph to express causal

dependency and conditional probability table to quantify

the uncertainty of causality. To improve the efficiency of

FD, a graphical inference methodology named Dynamic

Uncertain Causality Graph (DUCG) has been developed

and successfully tested in many practical cases [44–51].

DUCG implements a causal-based expert system that

represents the knowledge of risk experts in either a directed

Table 1 Variables (events) in DUCG (N, the variable number; k, state)

Variable Symbol Meaning

B
N,k

Failure type always with k = 1

X
N,k

Symptom

Fn,k;i,j ? Uncertainty relationship between variable Vi,j in state j (V [ {B, X}, i = 1, 2, …, N) and variable Xn,k in

state k, where i = n and j = k
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acyclic graph or a directed cyclic graph, with a proba-

bilistic-based or evidence-based reasoning [44, 45]. Nev-

ertheless, the causal graphs construction of DUCG is

complicate in some cases, turning out redundant on the

symptoms needed by DUCG to correctly classify the

occurring faults [46–51]. In this paper, we propose a

method to simplify the inference rules of DUCG based on a

genetic algorithm (GA) that uses an FDT as surrogate

model of the DUCG.

This paper is organized as follows. In Sect. 2, a brief

introduction to the DUCG is given, including the inference

algorithm used for fault diagnosis and the steps required for

constructing the DUCG model. Section 3 illustrates the

method for transforming the expert knowledge into a FDT

by extracting a fuzzy rule base (FRB) from a first-tentative

DUCG model that provides a non-optimal symptom

matrix. In Sect. 4, GA is used for the optimization of the

decision rules by performing a wrapper search around the

FDT and results are discussed. In Sect. 5, conclusions are

drawn.

2 Brief introduction to DUCG

The methodology of DUCG is essential to apply the

causal graphs to symbolize logical relationships in

complex system in reality and to apply the virtual vari-

ables to express the causal uncertainties in that rela-

tionships, that is, the probabilities between child and

parent variables. DUCG provides a compact representa-

tion of the existing causal logic among events that can

occur in a process [45, 46], by resorting to causal graphs

composed by variables (or events) (as illustrated in

Table 1, where ‘‘V’’ is a generic variable and ‘‘N’’ and

‘‘k’’ are the variable number and state, respectively),

connected by function F.

We can define Fn;i as a graph composed of elements

connected by Fn,k;i,j [45], as shown in Fig. 1a, that can be

defined as:

Fn;k;i;j ¼ rn;i=rn
� �

An;k;i;j; ð1Þ

where An,k;i,j accounts for the mechanism that Vi,j induces

on Xn,k, without considering any other natural interaction

with other mutual variables Bi,j, j
0
= j; and (rn;i/rn) is a

weighting factor of An,k;i,j, with rn �
P

i rn;i and rn;i being

the causal relationship intensity between each Vi and Xn

[45–48].

The procedures for building a DUCG can be summa-

rized as follows:

1. A detailed analysis of the system to identify all B type

variables (i.e., fault types);

Fig. 1 Examples of weighted

functional elements (a) and a

simple DUCG (b)

Fig. 2 DUCG of the secondary loop of Unit-1 of Ningde NPP
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2. To determine the related X-type variables for each of

the B type variables;

3. To quantify the causal relationships, i.e., the F-type

variables.

For example, in Fig. 1b, B33,1 indicates the leakage in

the steam pipeline A, variable X47, X173 and X174 represent

the steam flow in pipelines A/B/C of a NPP, respectively;

and X48 indicates the pressure in the steam pipeline A,

where the normal, low and high pressure states are X48,0,

X48,1 and X48,2, respectively. The relationship, for example,

between X48 and X47 can be modeled by F48;47 = (r48;47/

P
r48;i) A48;47, where

P
r48;i = r48;47 ? r48;173 ? r48;174

(with r48;47 = r48;173 = r48;174 = 1) and A48;47 (the

uncertain mechanism that links the three states of X47 to the

three states of X48) is

A48;47 ¼
0 0 0

0 0:1 0:7
0 0:9 0:3

0

@

1

A;

which means that when X47 is in its ‘‘1’’ state X47,1, the

probabilities of the X48 in the ‘‘0’’ state X48,0 is 0, in the

‘‘1’’ state X48,1 is 0.1 and in the ‘‘2’’ state X48,2 is 0.9.

Similarly, when X47 is in its ‘‘2’’ state X47,2, the probabil-

ities of the X48,0, X48,1 and X48,2 are 0, 0.7 and 0.3,

respectively.

By utilizing this modeling method, the DUCG of the

secondary loop of Unit-1 of Ningde NPP is shown in

Fig. 2. The causal graph is of great complexity, including

151{B,X} type variables and 976 functional relationships,

of which 23 variables of type B (fault classes) are given in

Table 2.

After construction of the DUCG model based on the

expert knowledge regarding the expected progression of an

accidental scenario, that allows setting the functional

relationship among the variables, the diagnosis can be

carried out by monitoring the signals behavior during the

developing accidental scenario.

Table 2 The 23 fault classes

(variables of type B)
No. Root cause Description

1 B1,1 Condensate pump CEX001PO fails open

2 B2,1 Condensate pump CEX002PO fails open

3 B3,1 Feedwater control valve ARE031VL stuck open

4 B5,1 Feedwater control valve ARE032VL stuck open

5 B6,1 Feedwater control valve ARE033VL stuck open

6 B20,1 Leakage in the feedwater pipeline B

7 B21,1 Leakage in the feedwater pipeline C

8 B13,1 Turbine mechanical failure with no reactor trip

9 B37,1 Loss of main steam in turbine

10 B15,1 Leakage in the low pressure heater ABP401RE

11 B16,1 Feedwater heater bypass valve ABP011VL stuck open

12 B17,1 Leakage in the main steam pipeline

13 B18,1 Leakage in the steam generator pipe

14 B19,1 Feedwater heater AHP009VL stuck open

15 B25,1 Electric main feedwater pump APA102PO fails

16 B26,1 Electric main feedwater valve APA113VL stuck close

17 B38,1 Steam generator loss of feedwater

18 B28,1 Condensate extraction valve CEX108VL stuck open

19 B32,1 Turbine bypass valve GCT115VV stuck open

20 B33,1 Leakage in the steam line A

21 B34,1 Turbine bypass valve GCT131VV stuck open

22 B35,1 Turbine control valve GRE001VV stuck open

23 B36,1 Condenser vacuum pump CVI101PO stuck open

Fig. 3 One fault in DUCG model
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For better illustration, let us focus on the types and states

of the variables shown in Fig. 3. The fault B34,1 can be

diagnosed as ‘‘turbine bypass valve GCT131VV wrongly

opened during NPP normal operation’’ because it initiates

the flow decrease in Steam pipelines A, B and C (X1,1, X2,1,

X3,1), which, subsequently, decreases the pressure in the

steam manifolds VVP024MP and VVP025MP (X4,1, X5,1),

and increases the feedwater flow in the stream generators

SG-1, SG-2 and SG-3 (X6,2, X7,2, X8,2). The reduction of the

feedwater flow can further induce the average temperature

to decrease in the first loop (X9,1) and, eventually, cause the

increase of the reactor power (X10,1).

Therefore, a specific state of a B-type variable corre-

sponds to a set of X-type variables, which are all abnormal

signals received from the sensor measurements. In other

words, when a generic fault of class Cj, j = 1, 2,… occurs,

a set of representative symptoms emerge that might not be

univocal, as in this case.

3 From DUCG to fuzzy decision tree

The FDT methodology is selected to speed up the

optimization of the DUCG model in the case of non-uni-

vocal symptoms. The FDT is used as surrogate model of

the DUCG, whose fuzzy rules are to be extracted from the

DUCG model to build the FRB knowledge. A first-tenta-

tive prior FRB is chosen to represent the classification

reasoning. The FRB is composed of several fuzzy rules,

each one related to a specific FS for each fault class Bi,j. As

an example, with reference to Fig. 3, the fuzzy rule

defining B34,1 can be written as: ‘‘IF the flow in steam

pipeline A, B and C is low (X1,1, X2,1, X3,1); the pressure in

steam manifolds VVP024MP and VVP025MP is low (X4,1,

X5,1); the feedwater flow in stream generators SG-1, SG-2

and SG-3 is high (X6,2, X7,2, X8,2); the average temperature

in the first loop is low (X9,1) and the reactor power is high

(X10,1), THEN the turbine bypass valve GCT131VV has

been wrongly opened (B1,1)’’. Symptoms of X-type vari-

ables mentioned in the fuzzy rule can be summarized into

an observation vector r = (X1,1, X2,1, X3,1, X4,1, X5,1, X6,2,

X7,2, X8,2, X9,1, X10,1). All the fuzzy rules defining the

relationships between symptoms and the 23 fault classes

can be resumed in the symptom matrix (shown in Table 3

in a reduced form), in which the rows and columns are fault

classes and symptoms, respectively, where ‘‘1’’ means that

the symptom can be observed for the fault considered, and

‘‘0’’, otherwise. We note that the relationship between

symptoms and fault classes is not univocal, that is, one

Table 3 Symptom matrix

Cl 1 1 0 0 0 0 0 0 0 0

C2 1 1 0 0 0 0 0 0 0 0

C3 0 0 0 0 0 0 0 0 0 0

C4 0 0 0 0 0 0 0 0 0 0

C5 0 0 0 0 0 0 0 0 0 0

C6 0 0 0 1 0 0 0 0 1 1

C7 0 0 0 1 0 0 0 0 1 1

C8 0 0 0 0 0 0 0 0 0 0

C9 0 0 0 0 0 0 0 0 0 0

C10 0 0 0 0 1 0 1 0 0 0

C11 0 0 0 0 0 1 0 0 0 0

C12 0 0 0 0 0 0 1 0 0 0

C13 0 0 0 0 0 0 0 0 0 0

C14 0 0 0 0 1 0 0 1 0 0

C15 0 0 1 0 1 0 0 1 1 1

C16 0 0 1 1 0 1 0 1 0 0

C17 0 1 0 0 0 1 1 0 0 0

CI8 0 0 0 0 0 0 0 0 0 0

C19 0 0 0 0 0 0 0 0 0 0

C20 0 0 0 0 0 0 0 0 0 0

C21 0 0 0 0 0 0 0 0 0 0

C22 0 0 1 0 0 0 0 0 0 0

C23 0 0 0 0 0 0 0 0 0 0

Cl 0 0 0 0 0 0 0 0 0 0

C2 0 0 0 0 0 0 0 0 0 0

C3 0 0 1 1 0 1 0 0 0 0

C4 0 0 0 0 0 0 0 0 0 0

C5 0 0 1 0 0 0 0 0 0 0

C6 1 0 0 1 0 0 0 0 0 1

C7 1 0 0 0 0 0 0 0 0 1

C8 0 0 0 0 0 1 0 0 0 0

C9 0 0 0 0 0 1 0 0 0 0

C10 0 0 0 0 0 0 0 0 0 0

C11 0 0 0 0 0 0 0 0 0 0

C12 0 1 1 0 0 0 0 0 0 1

C13 0 0 0 0 0 0 0 0 0 0

C14 0 1 0 0 0 0 0 0 0 0

C15 1 0 0 0 0 0 1 1 1 0

C16 0 1 0 1 1 0 1 1 1 1

C17 0 0 0 0 1 0 0 0 0 0

C18 0 0 0 0 0 0 0 0 0 0

C19 0 0 0 0 0 0 0 0 0 0

C20 0 0 0 0 0 0 0 0 0 0

C21 0 0 0 0 0 0 0 0 0 0

C22 0 0 0 0 1 0 1 1 1 0

C23 0 0 0 0 0 0 0 0 0 0
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symptom may lead several faults and one fault can be

inferred only when several symptoms are simultaneously

observed. This is mainly due to the complex nonlinear

relationship of the events, but also to the partial and

sometimes overwhelming expert knowledge at the basis of

the DUCG.

Sensor errors and ambiguous deviation ranges (that is,

uncertainty in the symptoms values) can be accommodated

in the FRB by defining a fuzzy observation vector

1 ¼ ðlS1 ; lS2 ; . . .; lSnÞ, in which each element lSn is the

degree of membership of a symptom Sn to the FS ‘‘symp-

tom occurrence’’.

The construction of the FDT aimed at substituting the

DUCG within the GA-based optimization of the FRs can

be done as shown in Fig. 4a; in particular:

1. Choose one fault class of the DUCG;

2. Select one symptom Sn;

3. Branch the tree based on presence or absence of the

symptom for the fault class considered by accounting

for its membership degree lSn ;
4. If the symptom can be attributed to only one fault

class, the associated node becomes a terminal leaf,

otherwise, a new node is added with membership

degree ð1� lSnÞ and procedure starts again from 2.

Fig. 4 Steps for building a FDT (a) and example of a FRB–FDT (b)

Fig. 5 Wrapper research with GA

Table 4 GA main parameters

Objective function U = a(1 - k) ? ba

Number of chromosomes in the population 270

Number of generations 100

Selection Standard Roulette

Replacement Children–Parents

Mutation probability 0.001

One-site crossover probability 1
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When all symptoms are screened out and placed in

related branches, the tree is terminated. Figure 4b shows a

general example of a FRB–FDT.

With the method illustrated above, the symptom

matrix of Table 3 of the DUCG model in Fig. 2b is

learnt by a FRB–FDT with 23 fault classes and 262

symptoms. The developed FRB–FDT is tested with

respect to 800 data synthetically simulated by the China

Nuclear Power Simulation Technology Co, Ltd.

(CNPSC). The results indicate that 58.9% of the

anomalous behaviors are correctly classified with respect

to the 23 classes, 29.7% are treated as ambiguous and

11.4% are wrongly classified due to the ambiguous

assignment between symptoms and fault classes of the

initial structure of DUCG based FRB–FDT (for the

classification rate quantification, we assume the assign-

ment to be correct when the membership grade to a class

is greater than 0.8, ambiguous when is between 0.8 and

0.2 and wrong when it is lower than 0.2).

4 GA optimization of the inference rules

To improve the classification rate of the DUCG and

lower its computational burden, thanks to a simpler

symptoms-fault relationship, a single-objective GA-based

optimization is conducted for finding the most representa-

tive symptom matrix that would best describe the system

behavior. We resort to the wrapper search scheme shown

schematically in Fig. 5.

A symptoms observation vector r becomes a chromo-

some of the GA, and the fitness function to evaluate the

performance of a set of symptoms in classifying the faults

is defined as:

U ¼ a 1� kð Þ þ ba; ð2Þ

where a(1 - k) accounts for the classification rate k of the

FDT, and ba accounts for the number a of symptoms

needed for classifying as many as possible fault classes,

since the optimization must obey a parsimony principle

(i.e., low a is preferable) to guarantee a low computational

complexity of DUCG and a large classification rate, i.e.,

low (1 - k). The objective (fitness) U must be minimized.

The parameters a and b are user-defined weight, and here

we set a = 80 and b = 1, so as to balance the different

magnitudes of (1 - k) and a, and normalize their mutual

contribution to U. The main parameters of the GA used are

listed in Table 4.

GA can better select symptoms for each fault class,

hence the improvement of performance. The results of

optimization are shown in Fig. 6. In Fig. 6a, the rate of

correct classification increases with the number of gener-

ations, while the rates of ambiguous and wrong classifi-

cations decrease. The three rates reach steadiness at the

90th generation, being 93.8, 5.9 and 0.4%, respectively. In

Fig. 6b, the value of objective function decreases with

increasing number of generations. This indicates that the

new set of selected chromosomes can neglect the

Fig. 6 Results of optimization

Fig. 7 Results in computation complexity
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contradictory assignments between symptoms and fault

classes, but, rather, link them without ambiguity. There-

fore, the GA optimization of the symptom matrix is ben-

eficial to the FDT and, thus, to the DUCG that would be

built on the basis of these results.

To be more accurate, one experiment based on 150 fault

sequences is carried out to verify the reduction in compu-

tation complexity. Figure 7 shows the results by initial

DUCG inference model and the 100th generation of FDT-

based GA optimization. The number of symptoms needed

for classification of maximum fault classes, that is, a in

Eq. (2), is used to measure the computation complexity. It

is shown that the computational complexity can be sig-

nificantly reduced after the optimization and the degrees of

computation reduction are all above 70.5%, maximum to

84.95%.

5 Conclusion

DUCG is an interesting method for fault diagnosis for

industrial systems. However, causal graphs that are built by

DUCG for inferring the fault classes can become huge for

complex systems (as for the example of the secondary loop

in Unit-1 of Ningde NPP here considered). This also leads

to a computational burden when performing the diagnosis.

To optimize the DUCG model, we have proposed to

substitute it with a FDT and to optimize the symptom

matrix of this FRB model by a single-objective GA. A

wrapper search is carried out to look for the set of obser-

vations (coded into GA chromosomes) that best charac-

terize the failure behavior of the system. This is expected to

lead to twofold benefits: improvement of the classification

rate and decrease of the complexity of the DUCG model.

Experimental results on a set data from a simulator of

the secondary loop in Unit-1 of Ningde NPP demonstrate

that the application of GA for optimizing a FDT-based

DUCG is effective in optimizing the DUCG model.

However, some unique properties of DUCG, such as the

effect of combination of several symptoms to a fault, the

hidden relationships among different symptoms and the

process of time sequence in some cases are not considered

in this paper, which our future work focused on.
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